

Gemeinsame Jahrestagung in Basel 04. - 08. September 2023

Universität Basel, Kollegienhaus

Joint Annual Meeting in Basel 4 - 8 September 2023

in Zusammenarbeit mit - in collaboration with

Bulletin SPG / SSP Vol 39, 2023; ÖPG Tagungsband Nr. 72

Danksagungen - Acknowledgements

Wir danken...

- geberin der gemeinsamen Jahrestagung, insbesondere dem Departement Physik und dem lokalen Organisationsteam für die grosszügige Unterstützung; sowie für die durch die SPG genutzte Infrastruktur.
- · der Akademie der Naturwissenschaften Schweiz (SCNAT) für die Unterstützung der Tagungen und anderer Aktivitäten der SPG.
- der Schweizerischen Akademie der Technischen Wissenschaften (SATW) für die Unterstützung diverser Aktivitäten.
- se.

ABB Schweiz AG (SPG Preis in allgemeiner Physik)

IBM Research Rüschlikon (SPG Preis in Physik der kondensierten Materie)

Oerlikon Surface Solutions AG (SPG Preis in angewandter Physik)

Eidgenössisches Institut für Metrologie METAS (SPG Preis mit Bezug zur Metrologie)

COMSOL Multiphysics GmbH (SPG Preis in computergestützter Physik)

Hitachi Energy Switzerland AG (SPG Preis mit Bezug zur Energietechnik)

We thank...

- . the University of Basel as host of the Joint Annual Meeting, especially the Physics Department and the local organizing team for the generous support; as well as for the SPS being able to use the infrastructure
- the Swiss Academy of Sciences • (SCNAT) for the support of the conferences and further activites of the SPS.
- the Swiss Academy of Technical Sciences (SATW) for the support of various activities.
- · den Stiftern der folgenden Prei- · the sponsors of the following awards:

ABB Schweiz AG (SPS Award in General Physics)

IBM Research Rüschlikon (SPS Award in Condensed Matter Physics)

Oerlikon Surface Solutions AG (SPS Award in Applied Physics)

Federal Institute for Metrology METAS (SPS Award with relation to Metrology)

COMSOL Multiphysics GmbH (SPS Award in Computational Physics)

Hitachi Energy Switzerland AG (SPS Award with relation to Enery Technology)

member of the

Hitachi Energy

- · dem EU Projekt Isabel (https://emfl.eu/isabel/ · h2020-project/) für die grosszügige Unterstützung der eingeladenen Sitzung "Magnetic fields for materials research".
- · den Firmen, die durch Inserate, Beilagen und · durch ihre Präsenz an der Ausstellung die Tagung unterstützen (siehe Seite 10).
- the EU project Isabel (https://emfl.eu/isabel/ h2020-project/) for the generous support of the invited session "Magnetic fields for materials research".
- the companies supporting the conference by advertisements, supplements and their presence at the exhibition. (see page 10)

Tagungsorganisation

SPG: *S. Albietz, J. Chang, I. Zardo*, sowie die Sektionsleiter **ÖPG:** *C. Teichert*, sowie die Fachausschussleiter

CHIPP: A. Benelli NCCR SPIN: M. Longobardi SGN: M. Janoschek

Inhalt - Content

Allgemeine Tagungsinformationen - General Information about the Conference Aussteller, Inserate - Exhibitors, Advertisements	<u>7</u> <u>10</u>
Tagungsübersicht - Conference OverviewGeneralversammlung - General AssembliesPreisverleihungen - Award CeremoniesMontag - Monday 04.09.2023Dienstag - Tuesday 05.09.2023Mittwoch - Wednesday 06.09.2023Donnerstag - Thursday 07.09.2023Freitag - Friday 08.09.2023Poster - Posters	$ \begin{array}{c} 11\\ 11\\ 13\\ 14\\ 16\\ 18\\ 20\\ 22\\ \end{array} $
Satellite Event: Women in Physics Career Symposium	<u>23</u>
Sessions Special: Physics Funding in Switzerland Public Symposium: 400 th Birthday of Blaise Pascal Plenary Session Topical Sessions History and Philocophy of Physics	24 25 27
History and Philosophy of Physics Nanotechnology: From Hype to Application ÖPG Thesis Awards KOND I: (Thermal) Transport in 2D systems II: Cuprates III: Devices and Applications IV: Varia V: Superconductivity VI: Methods VII: Diffraction and Spectroscopy Poster Surfaces, Interfaces and Thin Films I: Surface Science II: Thin Films and Heterostructures III: Method Development Poster Nuclear, Particle- and Astrophysics (TASK) I: LHC Physics and Theory II: Muon III: Low Energy and Antimatter IV: Detector / DAQ and Algorithms V: Collider Dark Sector and Neutrinos VI: Dark Matter and Neutrinos Poster	33 35 39 40 40 43 45 47 49 52 47 49 52 56 66 66 62 56 56 56 56 56 56 56 56 56 56
Accelerator Science and Technology Atomic Physics and Quantum Optics Atomic Physics and Quantum Optics I Atomic Physics and Quantum Optics II Poster Gravitational Waves Gravitational Waves I Gravitational Waves II	81 84 86 88 91 91 92

New prospects in ARPES for quantum materials	94
New prospects in ARPES for quantum materials I	94
New prospects in ARPES for quantum materials II	96
Poster	98
Spintronics and Magnetism at the Nanoscale	99
Spintronics and Magnetism at the Nanoscale I	99
Spintronics and Magnetism at the Nanoscale II	101
Poster	104
Magnetic fields for materials research	109
Neutron Science	111
Neutron Science I	111
Neutron Science II	113
Poster	115
Quantum Computing	117
Quantum Computing I	117
Quantum Computing II	119
Quantum Computing III	120
Poster	122
Biophysics, Medical Physics and Soft Matter	125
Biophysics, Medical Physics and Soft Matter I	125
Biophysics, Medical Physics and Soft Matter II	127
Biophysics, Medical Physics and Soft Matter III	129
Applied Physics & Plasma Physics	131
Poster	133
Autorenverzeichnis - List of Authors	<u>134</u>
Notizen - Notes	<u>147</u>
Danksagungen - Acknowledegments	vordere Umschlaginnenseite

Allgemeine Tagungsinformationen -General Information about the Conference

Konferenzwebseite und Anmeldung

www.sps.ch

Tagungsort

Universität Basel, Kollegienhaus, Petersplatz 1, 4001 Basel

Tagungssekretariat

Das Tagungssekretariat befindet sich direkt beim Eingang Seite Spalentor, vor der Aula 033. Öffnungszeiten:

Mo 04.09.	10:00 - 17:30
Di 05.09 - Do 07.09.	08:00 - 18:00
Fr 08.09.	08:00 - 12:00

Alle Tagungsteilnehmer melden sich bitte vor dem Besuch der ersten Veranstaltung beim Sekretariat an. wo sie ein Namensschild und allfällige weitere Unterlagen erhalten sowie die Tagungsgebühr bezahlen.

Wichtig: Ohne Namensschild ist kein Zutritt zu einer Veranstaltung möglich.

Hörsäle

In allen Hörsälen stehen Projektoren zur Verfügung. Sie können direkt Ihre eigenen Mobilrechner anschließen. Die gängigen Adapter (HDMI, VGA) sind vorhanden. Bringen Sie ggf. Adapter und USB Stick mit.

Postersession

Die Postersession findet am Dienstag Abend sowie am Mittwoch während der Mittagspause in der Halle statt. Die Posterwände sind entsprechend diesem Programm numeriert, sodaß jeder Teilnehmer "seine" Wand leicht finden sollte. Alle Poster müssen an allen beiden Tagen ausgestellt bleiben.

Maximale Postergröße: A0 Hochformat.

Die 3 besten Poster werden am Freitag um 10:30h in einer kleinen Zeremonie ausgezeichnet.

Zahlung

Wir bitten Sie, die Tagungsgebühren im Voraus zu bezahlen. Sie verkürzen damit die Wartezeiten am Tagungssekretariat, erleichtern uns die Arbeit und sparen darüber hinaus noch Geld !

Conference web site and registration www.sps.ch

Location

Universität Basel, Kollegienhaus, Petersplatz 1, 4001 Basel

Registration Desk

The registration desk is situated near the entrance facing the Spalentor in the hallway. Opening Hours:

1 0	
Mon 4.9.	10:00 - 17:30
Tue - Thu 5.9 7.9.	08:00 - 18:00
Fri 8.9.	08:00 - 12:00

All participants must imperatively report at the registration desk before visiting any session. You will receive your name badge, possible further documents and can pay still due conference fees.

Attention: Without badge, entry to the lecture rooms will be refused.

Lecture Rooms

All rooms are equipped with projectors. You may connect your own laptop. The most common adapters (HDMI, VGA) are available. If need be, bring your own adapter and USB-key.

Postersession

The postersession will take place on Tuesday evening and during lunchbreak on Wednesday in the hall. The poster boards are numbered according to the program, so every participant will find their board easily. All posters are expected to be on display on both days.

Maximum poster size: A0 portrait.

The winners of the best poster prizes will be awarded on Friday 10:30h in a small ceremony.

Payment

We ask you to pay the conference fees in advance. This way you shorten waiting time at the registration desk, facilitate our work and save even money!

Preise gültig bei Zahlung bis 15. August - Fees valid for payments done before 15 August			
Kategorie - Category			
Einzelmitglieder von SPG, ÖPG, CHIPP - Individuels members of SPS, ÖPG, CHIPP	150	155	
Nicht-Mitglieder - Non-members	190	195	
Studenten VOR Master/Diplom Abschluß - Students BEFORE master/diploma degree	100	105	

Plenarsprecher, Eingeladene Sprecher, Preisträger - Plenary and invited speakers, awardees

Spezialangebot für "Noch nicht" SPG Mitglieder (s.u.) - Special offer for "not vet" SPS 200.members (see below)

Konferenz Abendessen - Conference Dinner

Zuschlag für Zahlungen nach dem 15. August sowie Barzahler an der Tagung -Surcharge for payments made after 15 August as well as for cash payments at the registration desk

Die Angaben zur Zahlung werden während der Anmeldung direkt auf der Webseite angezeigt.

Am Tagungssekretariat kann nur bar bezahlt werden (in CHF). Kreditkarten können leider nicht akzeptiert werden.

ACHTUNG: Tagungsgebühren können nicht zurückerstattet werden

Kaffeepausen, Mittagessen

Kaffeepausen, Apéro (Dienstag) und Lunchbuffet (Mittwoch) finden in der Halle bei der Händlerausstellung statt. Diese Leistungen sind in der Konferenzgebühr enthalten.

Für das Mittagessen an den anderen Tagen können die die Mensen sowie umliegende Restaurants genutzt werden.

Konferenz-Abendessen

Das Abendessen findet am Donnerstag im Restaurant Avledo im Anschluß an die Parallelsessions statt. Der Preis beträgt CHF 90.- pro Person (beinhaltet, 3-Gänge Menü und Getränke). Die Anzahl der Plätze ist limitiert, bitte registrieren Sie sich unbedingt im Voraus, damit wir disponieren können. Eine Anmeldung vor Ort ist nicht möglich !

Payment details are shown directly during registration on the conference website.

0 -

90 -

20.-

EUR

155 -

195.-

105 -

210.-

95 -

20.-

0 -

At the registration desk you can only pay cash (CHF). We can unfortunately not accept any credit cards.

ATTENTION: Fees are not refundable in case of cancellation

Coffee Breaks and Lunch

The coffee breaks, aperitif (Tuesday evening) and the lunch buffet on Wednesday will take place near the exhibition. These services are covered by the conference fee.

The campus mensa as well as nearby restaurants are at your disposal for lunch on the other davs.

Conference Dinner

The dinner will take place on Thursday in the restaurant Ayledo after the parallel sessions. The fee is CHF 90.- per person (including 3-course meal and drinks). The number of places is limited. Please register in any case in advance so we can plan accordingly. A registration on site is not possible!

Spezialangebot für "Noch-Nicht" SPG Mitglieder

Planen Sie, an unserer Tagung teilzunehmen sowie Mitglied der SPG zu werden? Sie können nun beides zum äusserst günstigen Preis von nur CHF 200.- (CHF 220.- nach dem 15. August). Dieser Betrag deckt die Konferenzgebühr sowie die Mitgliedschaft für 2023. Wählen Sie einfach bei der Online Registrierung die Kategorie "Special Offer", laden Sie das Anmeldeformular (https://www.sps.ch/fileadmin/doc/ Formulare/anmeldeformular_d-f-e.pdf) für neue Mitglieder herunter, und schicken es ausgefüllt an das SPG-Sekretariat zurück.

Dieses Angebot gilt nicht für Studenten oder Doktoranden. Diese profitieren sowieso von der Gratis-Mitgliedschaft im ersten Mitgliedsjahr, und zahlen nur die in der Tabelle angegebene Konferenzgebühr.

Anreise und Unterkunft

Alle Informationen zur Anreise und Hotelreservation finden Sie auf unserer Webseite. <u>https://www.sps.ch/events/gemeinsame-jahres-</u> tagung-2023/anreise-und-unterkunft

Internet

Während der gesamten Konferenz steht für die Teilnehmer Internet Zugang über das *eduroam* Netzwerk bereit.

Personen ohne Zugang zu *eduroam* können auch das *unibas-visitor* Netz verwenden (einmalige Anmeldung benötigt).

Anleitung:

https://its.unibas.ch/de/anleitungen/netzwerkzugang/anleitung-wlan/#c3073

Special offer for "not yet" SPS members

Do you plan to participate in our meeting and want also to become a member of the SPS ? Then take advandage of our special offer of CHF 200.- covering the conference fees and the membership for 2023. (CHF 220.- after 15 August) ! Just fill out the registration form, choose the option "Special offer", then download the admission form for new members (<u>https://www. sps.ch/fileadmin/doc/Formulare/anmeldeformular_d-f-e.pdf</u>), and return it filled and signed as soon as possible to the SPS Secretariat.

(This offer does not apply for students and Ph.D. students. They still profit from the free first-year-membership and have only to pay the conference fee shown in the table .)

Arrival and Accomodation

All information on arrival and hotel reservation can be found on our webpage. https://www.sps.ch/en/events/joint-annual-mee-

ting-2023/arrival-and-accommodation

Internet

During the whole conference the *eduroam* wireless network is available for the participants. Persons without access to *eduroam* can use the *unibas-visitor* network (first-time registration needed).

Instructions:

https://its.unibas.ch/en/manuals/network-access/anleitung-wlan-fuer-gaeste/

Aussteller - Exhibitors

Basel Precision Instruments GmbH CH-4056 Basel www.baspi.ch

COMSOL Multiphysics GmbH CH-8005 Zürich www.comsol.com

Dr. Eberl MBE Komponenten GmbH DE-71263 Weil der Stadt www.mbe-komponenten.de

> kiutra GmbH DE-81369 München <u>www.kiutra.com</u>

> mechOnics AG DE-81825 München www.mechOnics.de

Menhir Photonics AG CH-8152 Glattbrugg https://menhir-photonics.com/

> Qnami AG CH-4132 Muttenz www.qnami.ch

Quantum Design AG CH-1723 Marly https://qd-europe.com/ch/

Springer Verlag GmbH DE-69121 Heidelberg www.springer.com

TOPTICA Photonics AG DE-82166 Gräfelfing <u>www.toptica.com</u>

Inserate - Advertisements

TOPTICA Photonics AG

DE-82166 Gräfelfing www.toptica.com Zurich Instruments CH-8005 Zürich

www.zhinst.com

Tagungsübersicht - Conference Overview

GENERALVERSAMMLUNGEN - GENERAL ASSEMBLIES

Montag 04. September 2023, 18:15h - Monday 4 September 2023, 18:15h

SPG - SSP - SPS

Aula 033

Hörsaal 117 - Room 117

ÖPG

PREISVERLEIHUNGEN - AWARD CEREMONIES

SPG Preise, ÖPG Preise, SGN Preise, Charpak-Ritz Preis, EPS Emmy Noether Distinction SPS Awards, ÖPG awards, SNSS Awards, Charpak-Ritz Award, EPS Emmy Noether Distinction

> Dienstag 05. September 2023, 11:00h, Aula 033 -Tuesday 5 September 2023, 11:00h, Aula 033

Preise für die besten Poster - Best Poster Awards

Freitag 08. September 2023, 10:30h, Aula 033 -Friday 8 September 2023, 10:30h, Aula 033

quantum approved.

Laser Rack Systems

Quantum Technology meets Industry Standards

Our lasers do not need an optical table! The T-RACK is the perfect home for TOPTICA's high-end tunable diode lasers and frequency combs in a modular 19" form factor. Pick yours!

- Tunable Diode Laser Systems
- Frequency Comb Systems
- Wavelength Meters
- Locking Electronics
- 330 .. 1770 nm

toptica.com/T-RACK

www.toptica.com/T-RACK

Montag, 04. September 2023 - Monday, 4 September 2023

TIME		Rooms		TIME
	Aula 033 (ground floor)	117 (first floor)	118 (first floor)	
		Registration		
			Satellite Event: Women in	
			Physics Career Symposium	
08:30			81 Jamie Gloor	08:30
08:45			Keynote 1	08:45
09:00				09:00
09:15				09:15
09:30	SPS Board Meeting	ÖPG Board Meeting	82 Tomas Brage	09:30
09:45			Keynote 2	09:45
10:00			Coffee Break	10:00
10:15 10:30			83 Mitali Banerjee	10:15 10:30
10:30			Career Talk 1	10:30
11:00			84 Ruth Durrer	11:00
11:15			Career Talk 2	11:15
11:30			Mentors and mentees	11:30
11:45			introduce themselves	11:45
12:00				12:00
12:15				12:15
12:30			Lunch	12:30
12:45	Conference Opening		organised only for Speakers,	12:45
	Physics Funding in Switzerland		Mentors and Mentees	
	400 th Birthday of Blaise Pascal			
13:00	31 Bernd Gotsmann (i)			13:00
13:15	32 Ben Kilminster (i)			13:15
13:30	33 Philipp Treutlein (i)			13:30
13:45	Discussion		89 Safia Agueni	13:45
14:00			85 Heidi Potts	14:00
14:15			Career Talk 3	14:15
14:30	1 Dominique Descotes (p)		86 Zoë Holmes	14:30
14:45			Career Talk 4	14:45
15:00	0. Halana wan Owwanthawan (n)		Mentor-Mentee meetups	15:00
15:15 15:30	2 Helena van Swygenhoven (p)			15:15 15:30
15:45				15:45
16:00	Coffee Break	Coffee Break	Coffee Break	16:00
16:15	Conce Break	Conce Dicar	Conce Dicar	16:15
16:30	3 Michael Korey (p)		87 Andrea Biedermann	16:30
16:45			Career Talk 5	16:45
17:00			88 Tracy Northup	17:00
17:15	4 Thomas Schulthess (p)		Career Talk 6	17:15
17:30			Podium Discussion	17:30
17:45				17:45
18:00	Buffer time			18:00
18:15	SPS GENERAL ASSEMBLY	ÖPG GENERAL ASSEMBLY		18:15
18:30			Break	18:30
18:45				18:45
19:00				19:00
19:15				19:15
19:30			Dinner	19:30
19:45			Speakers, Mentors	19:45
┝──┤			and Mentees only	
1 I				

TIME		Rooms		TIME
	Aula 033 (ground floor)	114 (first floor)	115 (first floor)	
08:00	, laid 000 (giband 1001)	Registration		08:00
00.00	PLENARY SESSION			00.00
09:00	11 Anna Sfyrla (p)			09:00
09:15				09:15
09:30				09:30
09:45	12 Felix Mayer (p)			09:45
10:00				10:00
10:15	Coffee Break	Coffee Breek	Coffee Break	10:15
10:30 10:45	Сопее вгеак	Coffee Break	Conee Break	10:30 10:45
11:00	AWARD CEREMONY			11:00
11:15				11:15
11:30				11:30
11:45				11:45
12:00				12:00
12:15	13 Bruno Mansoulié (i)			12:15
12:30				12:30
12:45	Lunch	Lunch	Lunch	12:45
13:00				13:00
13:15				13:15
13:30				13:30
13:45	KOND	Nanatachnalamu	New prespects in ADDES	13:45
	KOND	Nanotechnology: From Hype to Application	New prospects in ARPES for quantum materials	
14:00	101 Michele Simoncelli (i)	51 T. Stöferle & A. Fuhrer **	501 Neil Wilson (i)	14:00
14:15		52 Dominik Ziegler (i) *		14:15
	102 Jin Jiang	53 Thomas Kornher (i) *	502 Michael Straub	14:30
14:45			503 Sandy Adhitia Ekahana	14:45
15:00	104 Joel Hutchinson	54 Peter Fankhauser (i) *	504 Julia Issing	15:00
15:15	105 Wojciech Pudelko	55 Cesare Alfieri (i) *	505 Chun Lin	15:15
15:30		56 David Pires (i) *	506 Christian S. Kern	15:30
15:45		57 Silke Traut (i) *	507 Yun Yen	15:45
16:00			508 Victor Rosendal	16:00
16:15	109 Virginia Carnevali	58 Samuel Sonderegger (i) *	509 Tom van Waas	16:15
16:30	Coffee Break	Coffee Break	Coffee Break	16:30
16:45 17:00		59 Fabian Könemann (i) *	511 Gunther Springholz (i)	16:45 17:00
17:00				17:00
17:30		60 Adam Kubec (i) *	512 Frédéric Chassot	17:30
17:45	114 Neven Barisic	61 Arnd Müller (i) *	513 Vladimir N. Strocov	17:45
18:00	115 Trpimir Ivsic	62 Barbara Stadlober (i) *	514 Michael Schüler (i)	18:00
18:15	117 Benjamin Klebel-Knobloch			18:15
18:30	118 Denis Sunko	63 Philipp Oertle (i) *	515 Dominik Brandstetter	18:30
18:45			517 Anna Hartl	18:45
19:00	Poster Session	Poster Session	Poster Session	19:00
19:15	and Apéro	and Apéro	and Apéro	19:15
19:30				19:30
19:45				19:45
20:00				20:00
20:15				20:00
20:30				20:30
20.00	l	ļ	1	20.00

DIENSTAG, 05. SEPTEMBER 2023 - TUESDAY, 5 SEPTEMBER 2023

(p) = Plenary talk, (i) = Invited talk, * = 20 min talk, ** = 10 min talk

116 cancelled

516 cancelled

14

TIME		Rooms		TIME
	116 (first floor)	117 (first floor)	118 (first floor)	
08:00	, , ,	Registration		08:00
09:00				09:00
09:15				09:15
09:30				09:30
09:45				09:45
10:00				10:00 10:15
10:15	Coffee Break	Coffee Break	Coffee Break	10:15
10:30	Conee Break	Conee Break	Conee Break	10:30
11:00				11:00
11:15				11:15
11:30				11:30
11:45				11:45
12:00				12:00
12:15				12:15
12:30				12:30
12:45	Lunch	Lunch	Lunch	12:45
13:00				13:00
13:15				13:15
13:30				13:30
13:45				13:45
	Atomic Physics and Quantum Optics	Gravitational Waves	TASK - FAKT	
14:00		481 Shubhanshu Tiwari *	301 Tiziano Bevilacqua	14:00
14:15	5 ()	482 Mudit Garg *	303 Davide Lancierini	14:15
14:30	402 Maryse Ernzer	462 Muult Garg	304 Martin Andersson	14:30
14:45	403 Jodok Happacher	483 Matthias Kruckow *	305 Kevin Hinze	14:45
15:00		484 Yumeng Xu *	306 Vitalii Lisovskyi	15:00
15:15	405 Diana Shakirova	485 Stefan Strub *	307 Maria Carolina Feliciano Faria	15:15
15:30	406 Virginia Oddi		308 Florian Hechenberger	15:30
15:45	407 Aaron Daniel	486 Shaikh Saad *	309 Luis Miguel Garcia Martin	15:45
16:00	408 Ksenija Simonović			16:00
16:15	409 Marcin Bialek	Orther Directo	Orther Devid	16:15
16:30	Coffee Break	Coffee Break	Coffee Break	16:30
16:45 17:00	411 Helmut Ritsch	491 Simone Bavera *	312 Katharina von Schoeler	16:45 17:00
17:00			312 Katharina von Schoeler 313 Anastasia Doinaki	17:00
17:30	412 Francesca Orsi	492 Eleanor Hamilton *	314 Stergiani Marina Vogiatzi	17:30
17:45	413 Tommaso Faleo	493 Franziska Riegger *	315 Ritwika Charkaborty	17:45
18:00		494 Zepei Xing *	316 Timothy Hume	18:00
18:15	415 M. Janovitch Broinizi Pereira		317 Chavdar Dutsov	18:15
18:30	416 Mohammadamin Tajik	495 Lara Bohnenblust *		18:30
18:45	417 Daniel James Murtagh		1	18:45
19:00	Poster Session	Poster Session	Poster Session	19:00
19:00	and Apéro	and Apéro	and Apéro	19:00
19:15	anu Apero	anu Apero	anu Apero	19:15
19:30				19:30
20:00				
				20:00
20:15 20:30				20:15
			1	20:30

(i) = Invited talk, * = 20 min talk

302 cancelled	
311 cancelled	

TIME Rooms TIME Aula 033 (ground floor) 114 (first floor) 115 (first floor) 08:00 Registration 08:00 PLENARY SESSION 09:00 14 Markus Valtiner (p) 09:00 09:15 09:15 09:30 09:30 09:45 09:45 15 Louise Harra (p) 10:00 10:00 10:15 10:15 10:30 Coffee Break Coffee Break Coffee Break 10:30 10:45 10:45 11:00 16 Bodo Wilts (p) 11:00 11:15 11:15 11:30 11:30 11:45 17 Nikola Opačak (i) 11:45 12:00 12:00 12:15 18 Elisabetta Nocerino (i) 12:15 12:30 12:30 12:45 Poster Session Poster Session Poster Session 12:45 13:00 and Lunchbuffet and Lunchbuffet and Lunchbuffet 13:00 13:15 13:15 13:30 13:30 13:45 13:45 14:00 14:00 14:15 14:15 KOND History and Philosophy **ÖPG** Thesis Awards of Physics 41 Reinhard Folk 14:30 121 Shih-Chi Yang (i) 71 Bernd Aichner (i) 14:30 14:45 14:45 15:00 15:00 123 Yashpreet Kaur 42 Franz Sachslehner 72 Josef Leutgeb (i) 15:15 124 Maurizio Musso 15:15 43 Bruno Besser 15:30 15:30 125 Jiyu Chen 73 Igor Sokolovic (i) 15:45 15:45 126 Sebastian Lamb-Camarena 16:00 44 Martin C. E. Huber 16:00 16:15 16:15 16:30 Coffee Break Coffee Break Coffee Break 16:30 16:45 16:45 Surfaces, Interfaces and Thin ... Spintronics and Magnetism at... 17:00 17:00 131 Sujay Ray 201 Katharina Kaiser (i) 601 Hans J. Hug (i) 17:15 132 Simone Di Cataldo 17:15 17:30 17:30 133 Peter Mlkvik 202 Igor Sokolovic 602 Loghman Jamilpanah 134 Julian Arnold 603 Michele Aldeghi 17:45 17:45 203 Claudia López-Posadas 18:00 135 Philipp Münzer 204 Moritz Eder 604 Ji Zou 18:00 18:15 136 Tianlun Yu 205 Martin Heinrich 605 Min-Gu Kang 18:15 137 Afonso dos Santos Rufino 206 Francesco Presel 606 Lauren Riddiford 18:30 18:30 138 Yuan Wei 607 Marek Bartkowiak 207 Philipp Maier 18:45 18:45 19:00 139 Jiawei Yan 208 Chunlei Wang 608 Xanthe Verbeek 19:00 609 David Schmoll 209 Panukorn Sombut 19:15 19:15 19:30 19:30

MITTWOCH, 06. SEPTEMBER 2023 - WEDNESDAY, 6 SEPTEMBER 2023

(p) = Plenary talk, (i) = Invited talk

122 cancelled

TIME	Roc	oms	TIME
	117 (first floor)	118 (first floor)	
08:00	Regist	ration	08:00
	, and the second se		
09:00			09:00
09:15			09:15
09:30			09:30
09:45			09:45
10:00			10:00
10:15			10:15
10:30	Coffee Break	Coffee Break	10:30
10:45			10:45
11:00			11:00
11:15			11:15
11:30			11:30
11:45			11:45
12:00			12:00
12:15			12:15
12:30			12:30
12:45	Poster Session	Poster Session	12:45
13:00	and Lunchbuffet	and Lunchbuffet	13:00
13:15			13:15
13:30			13:30
13:45			13:45
14:00			14:00
14:15			14:15
	Neutron Science	TASK - FAKT	
14.00	704 Ellers Frank		14.00
	701 Ellen Fogh	321 Victoria Kletzl	14:30
	702 Danielle Yahne	322 Wenting Chen	14:45
	703 Xavier Boraley	323 Cornelis B. Doorenbos	15:00
	705 Amirreza Hemmatzade	324 Nathalie Ziehl	15:15
15:30	706 Artur Gregor Glavic	325 Dieter Achim Ries	15:30
15:45		326 Philipp Peter Blumer 327 Carina Killian	15:45
16:00	708 Jonas Philippe		16:00
16:15	Coffee Break	328 Angela Gligorova Coffee Break	16:15 16:30
16:30		Conee break	16:30
	711 Ivo Schulthess (i)	331 Louis Henry	17:00
17:00		332 Meinrad Moritz Schefer	17:00
	712 Daniel Mazzone	333 Federico Ronchetti	17:30
	713 Mina Akhyani	334 Maximinio Adrover	17:45
	714 Irina Pradler	336 Yifeng Wang	17:45
18:15		337 Chiara Magliocca	18:15
	716 Alex Backs	338 Daniele dal Santo	18:30
18:45		339 Matthieu Heller	18:45
	718 Richi Kumar	340 Matteo Milanesio	19:00
19:15	719 cancelled		19:15
		1	19:30
19:30			10.00

(i) = Invited talk

704 cancelled	335 cancelled
---------------	---------------

TIME Rooms TIME Aula 033 (ground floor) 114 (first floor) 115 (first floor) 08:00 Registration 08:00 PLENARY SESSION 09:00 19 Peter Puschnig (p) 09:00 09:15 09:15 09:30 09:30 20 Christian Wüthrich (p) 09:45 09:45 10:00 10:00 10:15 10:15 10:30 Coffee Break Coffee Break Coffee Break 10:30 10:45 10:45 11:00 21 Anton Zeilinger (p) 11:00 11:15 11:15 11:30 11:30 11:45 22 Simone Gargiulo (i) 11:45 12:00 12:00 12:15 12:15 23 Franz Embacher (i) 12:30 12:30 12:45 Lunch Lunch Lunch 12:45 13:00 13:00 13:15 13:15 13:30 13:30 13:45 13:45 KOND Surfaces, Interfaces Spintronics and Magnetism and Thin Films at the Nanoscale 14:00 141 Aline Ramires 611 Santa Pile (i) 14:00 211 Christian Teichert 14:15 14:15 142 Barbora Budinská 14:30 14:30 143 Loic Herviou 212 Roland Resel 612 Sebastian Knauer 14:45 144 Pierre Fromholz 14:45 214 Gyanendra Panchal 613 Khrystyna Levchenko 15:00 145 Bartholomew Andrews 215 Hang Li 614 Rostyslav Serha 15:00 15:15 147 Even Thingstad 216 Jonas Knobel 615 Noura Zenbaa 15:15 15:30 148 Zurab Guguchia 15:30 217 Jeong Ha Hwang 616 Aishwarya Vishwakarma 15:45 15:45 146 Zurab Guguchia 218 Dominik Lüthi 617 Tara Tosic 16:00 149 Titus Mangham-Neupert 16:00 219 Noah J. Hourigan 618 Andreas Apseros 16:15 150 Mark Fischer 619 Jamie Robert Massey 16:15 16:30 Coffee Break Coffee Break Coffee Break 16:30 16:45 16:45 Magnetic fields for materials. 17:00 151 Kacper Prech 221 Fabian Paschke 17:00 681 Charles Simon (i) 17:15 152 Jens Oppliger 222 Bareld Wit 17:15 153 Xuan Dang Dang 17:30 223 Josef Simbrunner 682 Ana Akrap (i) 17:30 154 Qi He 17:45 17:45 224 Jiri Pavelec 18:00 155 Ishita Pushkarna 223 Alexander Syböck 683 Alexander Steppke (i) 18:00 18:15 156 Mithilesh Nayak 226 Luis Rosillo 18:15 18:30 157 Ding Peng 227 Paul Ryan 684 Matija Čulo (i) 18:30 18:45 228 Giulio de Vito 18:45 19:00 Transfer to Dinner 19:00 19:15 19:15 19:30 Conference Dinner 19:30 19:45 19:45 20:00 20:00 22:30 22:30

DONNERSTAG, 07. SEPTEMBER 2023 - THURSDAY, 7 SEPTEMBER 2023

(p) = Plenary talk, (i) = Invited talk

213 cancelled

TIME		Rooms		TIME
	116 (first floor)	117 (first floor)	118 (first floor)	
08:00		Registration		08:00
00.00				00.00
09:00				09:00
09:15				09:15
09:30				09:30
09:45				09:45
10:00				10:00
10:15				10:15
10:30	Coffee Break	Coffee Break	Coffee Break	10:30
10:45				10:45
11:00				11:00
11:15				11:15
11:30				11:30
11:45				11:45
12:00 12:15				12:00 12:15
12:15				12:15
12:30	Lunch	Lunch	Lunch	12:30
13:00	Lunon	Lunon	Lanon	13:00
13:15				13:15
13:30				13:30
13:45				13:45
10.10	Quantum Computing	Biophysics, Soft Matter	Accelerator Science	10.10
		and Medical Physics	and Technology	-
14:00	801 Dominik Zumbühl	901 Claire Dessalles	381 Nicolas Vallis	14:00
14:15	802 Daniel Egger (i)	902 Daphne Laan	382 Douglas Martins Araujo	14:15
14:30		903 Simone Cicolini	383 Bernhard Auchmann	14:30
14:45	803 Kyrylo Simonov	904 Mathieu Dedenon	384 Henrique Garcia Rodrigues	14:45
15:00	804 Samson Wang	905 Shiling Liang	385 Cristobal Garcia	15:00
15:15	805 Han Zheng	906 Vincent Hickl	386 Leon van Riesen-Haupt	15:15
15:30	806 Zoe Holmes (i)	907 Friso Douma	387 Sofia Carolina Johannesson	15:30
15:45		908 Vojislav Gligorovski	388 Christophe Lannoy	15:45
16:00	807 Stefano Bosco	909 Mukund Krishna Kothari	389 Giuseppe Lospalluto	16:00
16:15	808 Bence Hetényi	910 Marco Labagnara	390 Elena Benedetto	16:15
16:30	Coffee Break	Coffee Break	Coffee Break	16:30
16:45			TASK - FAKT	16:45
17:00	811 Lieven Vandersypen (i)	911 Suliana Manley (i)	341 Pasquale Andreola	17:00
17:15 17:30	812 Manuel Rudolph	912 Sahand Rahi	342 Benjamin Banto Oberhauser 343 Martina Mongillo	17:15 17:30
17:45	813 Arianna Nigro	913 Lorenzo Scutteri	344 Giovanni Dal Maso	17:45
17.45	814 Andrea Hofmann (i)	914 Augustin Muster	345 Anni Kauniskangas	17.45
18:00	ora Anurea normann (I)	914 Augustin Muster 915 Maxime Scheder	345 Anni Kauniskangas 346 Martina Ferrillo	18:00
18:15	824 Ben Lanyon (i)	915 Maxime Scheder 916 Elif Gencturk	346 Martina Fernilo 347 Jeremy Atkinson	18:15
-				
18:45	.	917 Paolo de los Rios	348 Marta Babicz	18:45
19:00	Transfer	to Dinner	349 Saul Alonso Monsalve	19:00
19:15				19:15
19:30		Conference Dinner		19:30
19:45				19:45
20:00				20:00
22:30				22:30

TIME	Rooms		
	Aula 033 (ground floor)	114 (first floor)	
08:00			
	PLENARY SESSION		
09:00	24 Karina Morgenstern (p)		09:00
09:15			09:15
09:30			09:30
09:45	25 Sascha Schmeling (p)		09:45
10:00			10:00
10:15			10:15
10:30	POSTER AWARD SESSION		10:30
10:45	Coffee Break	Coffee Break	10:45
11:00			11:00
11:15			11:15
11:30	in Physics		11:30
11:45	Panel Discussion		11:45
	KOND	Applied Physics and	
		Plasma Physics	
12:00		952 Dorian Brandmüller	12:00
12:15		953 Daniele Hamm	12:15
12:30		954 Emanuel Huett	12:30
12:45		955 Martim Zurita	12:45
13:00	166 Robert Schwarzl	956 Antonia Frank	13:00
13:15		957 Cosmas Heiß	13:15
13:30		958 Haomin Sun	13:30
13:45		959 Cyrille Sepulchre	13:45
14:00	170 Xunyang Hong		14:00
14:15		NO	14:15
14:30	El	ND	14:30

FREITAG, 08. SEPTEMBER 2023 - FRIDAY, 8 SEPTEMBER 2023

(p) = Plenary talk, (i) = Invited talk

TIME		Rooms		TIME
	116 (first floor)	117 (first floor)	118 (first floor)	
08:00		Registration		08:00
00.00				00.00
09:00				09:00
09:15				09:15
09:30				09:30
09:45				09:45
10:00				10:00
10:15				10:15
10:30				10:30
10:45	Coffee Break	Coffee Break	Coffee Break	10:45
11:00				11:00
11:15				11:15
11:30				11:30
11:45				11:45
	Quantum Computing	Biophysics, Soft Matter	TASK - FAKT	
10.00		and Medical Physics		10.00
12:00	821 Georgios Katsaros (i)	921 Vivek Maradia (i)	351 Richard Diurba	12:00
12:15	000 Defect Farli	000 Davida Caia	050 Obviation Withwar	12:15
12:30	822 Rafael Eggli	922 Davide Cois	353 Christian Wittweg	12:30
12:45		923 Maximilian Sohmen	354 Mariana Rajado Silva	12:45
13:00 13:15	825 Jann Hinnerk Ungerer	924 Nils Plähn	355 Paloma Cimental Chavez	13:00
13:15	826 Alicia Ruiz	925 Peter Strassmann	356 Luca Marin	13:15
		926 Mahsa Barzegarkeshteli	357 Rituparna Maji	13:30
13:45		927 Matthieu Schmidt	358 Caterina Trimarelli	13:45
14:00 14:15				14:00 14:15
14:15		END		-
14:30		END		14:30

(i) = Invited talk

823 cancelled

352 moved to talk 349

Postersession: Tue: 19:00	- 20:30 ; Wed: 12:45 - 14:30
It is expected that ALL posters	s are on display on both days !
KOND	Spintronics and Magnetism
	at the Nanoscale
181 Subhrangsu Sarkar	631 Tianyue Wang
182 Ilaria Villa	632 Kristýna Davídková
183 Jose Manuel Sojo Gordillo	633 Davide Pecchio
184 Oksana Shliakhtun	634 Ales Hrabec
185 Bernhard Lüscher	635 Sourav Sahoo
186 Zakaria Jouini	636 Aleksandra Pac
187 Samuel Louis Nyckees	637 Samuel Treves
188 Sara Mustafi	638 Akash Gupta
189 Olivier Gauthé	639 Andreas Höfinger
	640 Luca Berchialla
	641 Gavin Macauley
Surfaces, Interfaces	642 Andrey Voronov
and Thin Films	643 Ryan Thompson
241 Stefan Müllegger	644 Alexis Rary-Zinque
242 Reshma Peremadathil Pradeep	645 Liza Žaper
243 Gyanendra Panchal	
	Neutron Science
TASK	
	731 Marek Bartkowiak
361 Stefan Hochrein	732 Alberto José Saavedra García
362 Manbing Li	733 Sergey Ermakov
363 Viktoria Kraxberger	734 Brigitte Decrausaz
364 Andrej Maraffio	735 Tobias Neuwirth
365 Alina Weiser	736 Stavros Samothrakitis
366 Nikolaus Schneider	
	Quantum Computing
Atomic Physics	
and Quantum Optics	841 Marcin Kisiel
431 Christian Mangeng	842 Taras Patlatiuk
432 Moritz Weegen	843 Artemii Efimov
433 Mikolaj Franciszek Roguski	844 Jessica Richter 845 Sacha Lerch
434 Mikhail Popov	845 Sacha Lerch
435 Pietro Vahramian	846 Pierre Chevalier Kwon
436 Richard Ferstl	847 Simon Svab
437 Tabea Nelly Clara Bühler	848 Tianyang Shen
438 Florian Goschin	849 Nicolas Forrer
439 Christoph Amtmann	850 Florian Emaury
New prospects in ARPES	Applied Physics &
for quantum materials	Plasma Physics
531 Enrico Della Valle	971 Haomin Sun
532 moved to talk 517	972 moved to talk 959
533 Yann Alexanian	973 Sonali Mayani
534 cancelled	974 Sascha Ranftl

Satellite Event: Women in Physics Career Symposium

This event is supported by Universität Zürich, PSI Villigen, SPS, SCNAT, and Zurich Instruments.

Monday, 04.09.2023, Room 118

Time	ID	Women in Physics Career Symposium Chair: Philipp Schmidt-Wellenburg, PSI Villigen
08:30	81	Keynote 1: Jamie Gloor
09:30	82	Keynote 2: Tomas Brage
10:00		Coffee Break
10:30	83	Career Talk 1: Mitali Banerjee
11:00	84	Career Talk 2: Ruth Durrer
11:30		Mentors and Mentees introduce themselves
12:30		Lunch (organised for Speakers, Mentors, Mentees)
13:45	89	Presentation of the Women-in-Tech Organisation: Safia Agueni
14:00	85	Career Talk 3: <i>Heidi Potts</i>
14:30	86	Career Talk 4: <i>Zoë Holmes</i>
15:00		Mentor - Mentee Meetups
16:00		Coffee Break
16:30	87	Career Talk 5: Andrea Biedermann
17:00	88	Career Talk 6: Tracy Northup
		Moderation: Anna Fontcuberta i Morral, EPFL
17:30		Podium Discussion
18:30		Break
19:30		Dinner (for Speakers, Mentors, Mentees)

Sessions

Special: Physics funding in Switzerland

Monday, 04.09.2023, Aula 033

Time	ID	OFFICIAL CONFERENCE OPENING
12:50		Welcome note
		Physics funding in Switzerland Chair: Johan Chang, Universität Zürich
13:00	31	Trends and developments in funding by the Swiss National Science Foundation
		Bernd Gotsmann, IBM Research Zürich
13:15	32	Funding Swiss researchers in international large scale scientific projects
		Ben Kilminster, Universität Zürich
13:30	33	Funding fundamental physics research, a researcher's perspective
		Philipp Treutlein, Departement Physik, Universität Basel
13:45		Discussion
14:25		END

Public Symposium: 400th Birthday of Blaise Pascal

Monday, 04.09.2023, Aula 033

Time	ID	400 [™] Birthday of Blaise Pascal
		Chair: Teresa Montaruli, Université de Genève
14:30	1	Order and disorder in Pascal's PENSÉES
		Dominique Descotes, Université Clermont Auvergne
		The history of criticism, particularly in the 19 th century, has tended to portray Pascal as an author who was the victim of serious intellectual and medical disorders, as evidenced by the appearance of the manuscript of his Pensées (owned by the BNF). An examination of this manuscript leads to different conclusions, both literary and psychological.
15:15	2	Pascal's law and the Pascal unit in material science and engineering
		Helena van Swygenhoven, EPFL & Paul Scherrer Institut Villigen
		Pascal's law had an enormous impact on material science and engineering. The law states that a change in pressure at any point in an enclosed incompressible fluid at rest is transmitted undimin- ished to all points in the fluid. The pressure, defined as the amount of force that is exerted per unit area, is in the International System of Units (SI) expressed in Pascal (Pa), which is equivalent to 1 Newton of force applied over an area of 1 square meter. The Pascal (Pa) unit is however also used to quantify stress. Stress and pressure are both words that are commonly mistaken for one another. Pressure is a scalar quantity. Stress, defined as the internal resistive force to deformation per unit area, has a magnitude and direction, and the angle with the plane on which the stress is acting is important. Therefore, stress is a tensor. 1 Pa is inconveniently small compared to the stresses most structures experience or the pressure in closed environments, one often encounters 10 ³ Pa = 1 kPa, 10 ⁶ Pa = MPa, or 10 ⁹ Pa = GPa. Using examples, this talk will make the link between the physics contained in Pascal's law and some applications in material science and engineering. Well known applications of Pascal law are the hydraulic lift used in car garages or at the dentist, hydraulic cranes, and hydraulic brake systems in cars. But there are also applications in medicine, as for instance the first aid procedure "abdominal thrusts", also known as Heimlich maneuver, or the blood pressure device. This talk will also illustrate the use of the unit Pascal to quantify stress. The role of the directionality of stress is shown in examples where mechanical anisotropy poses a major challenge in manufacturing processes.
16:00		Coffee Break
		Chair: Bernhard Braunecker
16:30	3	Mechanical Thinking: The PASCALINE and its Planetary Predecessors
		Michael Korey, Staatliche Kunstsammlungen Dresden, Mathematisch-Physikalischer Salon
		The <i>Pascaline</i> is often hailed as the oldest surviving mechanical calculator, and the Mathema- tisch-Physikalischer Salon in Dresden proudly holds the largest of the extant machines by Blaise Pascal. Starting from an analysis and visualization of this machine, the talk moves to consider earlier analog calculators, in particular planetary automata designed to represent the real-time, 'true' movement of all stars and planets visible to the naked eye in accordance with Ptolemaic theory. Four such automata from the 16 th -century survive (in Paris, Vienna, Kassel, and Berlin) and may rightly lay claim to being the most intricate machines of their era. This richly illustrated talk will present recent research underscoring the mechanical thinking manifest in these subtle machines and attempt to explain how and why their makers – mathematicians, astronomers, and mechani- cians – used surprisingly varied means to achieve putatively similar ends.

17:15	4	From PASCALINE to PIZ DAINT IN THE ALPS infrastructure: a modern day view of computing in science Thomas Schulthess, ETH Zürich & Swiss National Supercomputing Center (CSCS) Lugano
		"Piz Daint" is our flagship supercomputer system at CSCS. The current instance was introduced in 2017 and includes five thousand computing nodes accelerated with general purpose graphic processing units (GPGPU) NVIDIA dubbed "Pascal". It has been the workhorse of our User Laboratory over the past decade, leading the way for Europe's adoption of GPGPU in scientific computing.
		While the allure of supercomputing system's arithmetic performance remains, physics has forced the balance of computing devices to change, and we now must pay much more attention to data flow than arithmetic efficiency. Moreover, as we embrace the evolving digital age, the demands of scientific computing are shifting towards more complex workflows. These were the primary motivations to begin developing the new "Alps" infrastructure. As "Piz Daint" transitions into the "Alps" infrastructure, it will essentially become a software-defined cluster within "Alps." The current Pascal accelerators will be substituted with the latest GPGPUs, with vastly improved memory performance.
		Observing the progression of energy efficiency is intriguing; however, performance enhancements come at the cost of higher power consumption. These performance gains now come at higher cost, making a new trend that underscores the dusk of Moore's Law.
18:00		END
18:15		General Assemblies of SPS and ÖPG *
19:15		END

* ÖPG: Room 117

Plenary Session

Tuesday, 05.09.2023, Room Aula 033

Time	ID	PLENARY SESSION I
		Chair: Teresa Montaruli, Université de Genève
09:00	11	Looking forward to new physics with the LHC
		Anna Sfyrla, Université de Genève
		The Large Hadron Collider (LHC) experiments are currently gathering massive amounts of data to study the Standard Model and search for new physics that could unlock the secrets of matter and interactions. In a few years, the upcoming high-luminosity LHC phase will deploy upgraded detectors of unparalleled precision, allowing us to collect data that is at least 10 times larger than our current dataset. At the same time, innovative experiments investigating uncharted areas of the parameter space in the forward direction of LHC collisions offer tantalizing potential for discovering new physics. This talk will provide an overview of recent progress and results in the search for new physics at the LHC, and will discuss thrilling prospects that lie ahead.
		Chair: Andreas Fuhrer, IBM Rüschlikon
09:45	12	Sensirion: From start-up to a global player
		Felix Mayer, Sensirion
		25 years ago, Sensirion was founded by Moritz Lechner and me as a spin-off company of ETH Zurich. What started with two physicists and two measurement parameters is today a company that employs more than 1'200 people worldwide (700 of them in Switzerland). Around 100 of the employees originally studied physics. Today we offer around 15 sensor families which have many different variants covering a multitude of physical and chemical sensing applications. Every year Sensirion produces and sells more than 200 million sensors. Each sensor is individually calibrated. This means, that we "do a lot of physics", before we can sell our products. In my presentation, I will introduce individual measuring parameters and measuring principles and use some examples to show where physicists contribute to our success.
10:30		Coffee Break
11:00		Award Ceremony
		Chair: Henri Mariette, Société Française de Physique
12:15	13	From Z to Higgs, and beyond!
		Bruno Mansoulié, Université Paris-Saclay
		Hadron collisions at large accelerators have proven amazingly efficient in exploring the elementary particles and their interactions. The first important milestone was the discovery at CERN in 1984 of the W and Z bosons, mediators of the electroweak interaction. Then in 1995 the TeVatron, at Chicago, found the last known constituent of matter: the top quark. Finally at CERN, after a long design and construction period, the largest ever particle accelerator, the LHC, was commissioned in 2010. After a short operation period, the large collaborations ATLAS and CMS were able to announce the discovery of the Higgs boson, in 2012. With the ever-increasing performances of the LHC, this new particle is now observed in many production and decay modes. The wealth of data gathered and combined by powerful statistical methods allows to verify the theory of the Standard Model with an excellent accuracy. It also offers many possibilities to hunt for deviations, which would indicate a sign of new physics.
12:45		Lunch
14:00		Topical Sessions
		Postersession with Apéro
19:00		

Wednesday, 06.09.2023, Room Aula 033

Time	ID	PLENARY SESSION II Chair: Roland Resel, TU Graz	
09:00	14	High-resolution and operando analysis for understanding surface and interface processes	
		Markus Valtiner ¹ , M. Olgiati ² , P. Bilotto ² , Laura L. E. Mears ¹ , A. T. Celebi ¹ ¹ Vienna University of Technology, Institute of Applied Physics, Wiedner Hauptstraße 8-10/E134, AT-1040 Vienna ² CEST Competence Center of Electrochemical Surface Technology GmbH, Viktor-Kaplan Str. 2, AT-2700 Wiener Neustadt, and Stahlstr. 2-4, AT-4020 Linz	
		Function and properties of electrified interfaces are controlled by a complex and concerted compe- tition of specific and unspecific interaction of reactive surfaces with ions and water in an electrolyte. For instance, the local interface structure determines transition state barriers for electrocatalytic reactions and controls electron transfer from a surface toward a solution species, or vice versa. Further, properties such a lubrication and friction are controlled by molecular interfacial structures.	
		Atomic force microscopy techniques provide an unprecedented resolution of complex surface structures, in both gaseous and recently also liquid environments. In this contribution I will discuss our understanding of ion exchange processes, and competitive molecular interaction at the interface of Muscovite mica, and will show first results on electrochemical interfaces. Starting from highly resolved data interfacial ion/water adsorption, it is possible to understand an predict competitive adsorption, and to derive quantitative thermodynamic information of molecular interactions at a complex solid/liquid interface. I will show different examples, how molecular resolution studies can provide an understanding of the emerging properties such as friction, reactivity or adhesion at electrified interfaces.	
		Chair: Philippe Jetzer, Universität Zürich	
09:45	15	A journey to the Sun: why, how and what is being discovered	
		Louise Harra, Physikalisch-Meteorologisches Observatorium Davos / World Radiation Center (PMOD/WRC), Dorfstrasse 33, CH-7260 Davos Dorf & ETH Zürich	
		The ESA Solar Orbiter space mission's goal is to observe close into the Sun and then slowly climb out of the ecliptic to view the solar poles for the first time. The first science perihelia took place in March 2022. Solar Orbiter aims to make significant breakthroughs in our understanding both of how the inner heliosphere works, and of the effects of solar activity on it. The spacecraft is taking in situ measurements will be used alongside remote sensing close to the Sun to uncover the source regions of the solar wind. I will summarise the latest results of the mission and look to future opportunities.	
10:30		Coffee Break	
		Chair: Maurizio Musso, Universität Salzburg	
11:00	16	Amorphous photonic networks in insects Bodo Wilts ^{1,2} , Viola Bauernfeind ¹ , K. Djeghdi ¹ , Alessandro Parisotto ¹ , Ulrich Steiner ¹ ¹ Adolphe Merkle Institute, University of Fribourg, Switzerland ² Department of Chemistry and Physics of Materials, University of Salzburg, Austria	
		Photonic nanostructures can vary in their degree of local order and their final optical appearance is the result of light interacting with these nanostructures that can further vary in their chemical composition. Insect are particularly interesting due to their large diversity of colored displays and their associated nanostructures. Here, we will show recent results on the research of weevils and longhorn beetles that all display vivid colors and rely on varying degrees of (dis)order combined with pigments. Using light microscopy, FIB-SEM tomographyand FDTD simulations, we investigat- ed the mechanisms underlying the angle-independent color patterns and highlight the important contributions of disorder to the final appearance of the animals. This work illustrates the complex interplay of structural and pigmentary color and show pathways to use this in synthesizing novel optical materials.	

Time	ID	Chair: Christian Teichert, Montanuniversität Leoben	
11:45	17	From self-starting frequency combs to optical solitons in semiconductor lasers	
		Nikola Opačak, TU Wien, Institute of Solid State Electronics, AT-1040 Wien, Harvard University, School of Engineering and Applied Sciences, Cambridge, MA 02138, USA	
		Optical frequency combs (OFCs) stand as the cornerstone of modern optics, with applications ranging from fundamental science to sensing and spectroscopy. Semiconductor lasers are especially appealing as OFC generators due to their compactness, electrical driving, and broadband gain. Beyond this, the fast carrier dynamics of these lasers yields a large resonant Kerr nonline-arity, which can be several orders of magnitude greater when compared to the bulk material. The giant optical nonlinearity is exploited to form self-starting frequency combs without the need of any external optical elements. When the laser active material is embedded in a monolithically-integrated ring cavity, it forms a new type of optical dissipative soliton, called the Nozaki-Bekki (NB) soliton. It forms spontaneously with the tuning of the laser bias and eliminates the need of an external optical pump. The NB soliton emerges as a traveling localized dark pulse, which is extensively characterized using both phase-sensitive measurements and numerical simulations. The soliton canture of these confined waveforms is additionally corroborated by demonstrating multisoliton states as well. We explain the appropriate dispersive and nonlinear conditions that lead to NB soliton. Ring semiconductor lasers offer an electrically-driven platform for direct soliton generation, targeting applications in the mid-infrared spectral region.	
		Chair: Marc Janoschek, PSI Villigen	
12:15	18	A Comprehensive Experimental Approach to Multifunctional Quantum Materi- als & their Physical Properties: Geometry and Physics in Condensed Matter.	
		Elisabetta Nocerino, Stockholm University & PSI Villigen	
		This thesis ranges within the vast framework of experimental condensed matter physics, producing results on several different systems and their characteristic physical phenomena, which are collected and presented here in a structuralist perspective. In fact, we show how, in solid condensed matter, the underlying arrangement of atoms, the symmetry of their structure, and their mutual interactions, underpin the form and the nature of their collective emergent properties. Our effort in this work was focused on unveiling complex magnetic ground states in newly synthesized materials (such as the low-dimensional colossal magnetoresistance compound NaCr ₂ O ₄ , and the triangular lattice antiferromagnets LiCrSe ₂ and LiCrTe ₂), as well as in the clarification of unconventional symmetry breaking phenomena in highly debated systems (such as the superconductor LiTi ₂ O ₄).	
		the charge density wave system LaPt Si, and the topological insulator ZrTe.). In all cases, we could understand the physics of such systems only when we elucidated the details, and temper- ature dependent evolution, of their structures. To explore these structure-properties relationships, extensive experimental studies using large-scale research facilities were employed, with particular relevance given to neutron scattering.	
12:45		could understand the physics of such systems only when we elucidated the details, and temper- ature dependent evolution, of their structures. To explore these structure-properties relationships, extensive experimental studies using large-scale research facilities were employed, with particular	
12:45 14:30		could understand the physics of such systems only when we elucidated the details, and temper- ature dependent evolution, of their structures. To explore these structure-properties relationships, extensive experimental studies using large-scale research facilities were employed, with particular relevance given to neutron scattering.	

Thursday, 07.09.2023, Room Aula 033

Time	ID	PLENARY SESSION III Chair: Markus Aichhorn, TU Graz	
09:00	19	Photoemission orbital tomography: imaging molecular orbitals at intrinsic length and time scales	
		Peter Puschnig Institut für Physik, FB Theoretische Physik, Universität Graz, Universitätsplatz 5, AT-8010 Graz	
		Photoemission orbital tomography has emerged as a powerful technique that relates measured pho- toemission angular distributions from oriented films of organic molecules with the molecular or- bitals from which the electrons have been emitted. I will highlight its recent applications including the imaging of orbitals in three dimensions, the in-depth characterization of molecule/ substrate hy- bridizations and the identification of surface reaction products. Finally, using femto-second pump- probe spectroscopy, a new window into the dynamics of excited states has recently been opened. It brings us one step closer to the dream of directly watching in slow-motion videos how electrons move in quantum mechanical orbitals and how this motion shapes the functionalities of condensed matter.	
		Chair: Bruno Besser, ÖAW Graz	
09:45	20	Out of nowhere: The emergence of spacetime in quantum gravity	
		Christian Wüthrich, Université de Genève	
		Quantum gravity attempts to fuse insights from quantum physics, which has so successfully con- tributed to our understanding of the constitution of matter, and from general relativity, our best theory of gravitation. This is necessary in order to describe the physics of black holes and the very early universe. Such a theory is of great interest to the philosopher of nature: the conceptions of space and time arising from our manifest image of the world have already been challenged by gen- eral relativity, and adding quantum effects to the mix promises to add significant complications. As it turns out, most approaches to quantum gravity suggest that our world is ultimately neither spatial nor temporal. How can one conceptualize such a non-spatiotemporal world? May necessary con- ditions for empirical research in a such world even be violated? How can space and time not be fundamental, but instead emerge from a non-spatiotemporal structure just as the liquidity of water emerges from molecules which are themselves not liquid? Using a concrete example of a theory of quantum gravity, I will explain - and answer - these questions.	
10:30		Coffee Break	
		Chair: Christian Teichert, Montanuniversität Leoben	
11:00	21	Classical and Quantum Information	
		Anton Zeilinger, Universität Wien	
		In the talk an overview will be given of experiments which led from single particle interference to quantum entanglement. That finally led to realizations of basic primitives of quantum information. In the end I will present my arguments for quantum states as representations of logical propositions.	
		Chair: Hugo Zbinden, Université de Genève	
11:45	22	Electromagnetic processes of nuclear excitation	
		Simone Gargiulo, EPFL	
		Since their first identification in 1921, long-lived nuclear excited states, known as isomers, have held promise for realization of compact energy storage as they can hold these excitations for millions of years and beyond, also surpassing the age of the Universe; however, a process that could efficiently exploit their potential has yet to be discovered. We explore and propose several electromagnetic processes of nuclear excitation, including those that use the atomic surrounding, as possible tools that may enable the activation of isomers and the indirect manipulation of their lifetime.	

Time	ID	Chair: Maurizio Musso, Universität Salzburg
12:15	23	Educational considerations on the physics of global warming
		Franz Embacher, Faculties of Mathematics & Physics, University of Vienna
		One of the goals of school education is to familiarize the younger generation with basic facts about climate and climate change, and to stimulate their independent thinking about these issues. For physics teachers, this is not an easy task and raises numerous didactic questions. After all, phenomena and concepts needed in order to explain why the earth is warming (such als thermal radiation, absorption and emission by invisible gases, and the Stefan-Boltzmann law) are not really prominent among the traditional topics of physics education. Moreover, when it comes to address the inertia of the climate system, the role of the oceans as a huge heat reservoir, and the future of the earth's climate, as measured in centuries and millennia, we encounter the problem that thermodynamics as usually taught in school does not tell us much about time scales of global warming are identified.
12:45		Lunch
14:00		Topical Sessions
19:00		Transfer to Dinner
19:30		Conference Dinner

Friday, 08.09.2023, Room Aula 033

Time	ID	PLENARY SESSION IV Chair: Christian Teichert, Montanuniversität Leoben
09:00	24	Tailoring the environment to steer laser-driven reactions at surfaces: Solvation, confinement, and more
		Karina Morgenstern Physical Chemistry I, Ruhr University of Bochum, Universitätsstr. 150, DE-44803 Bochum
		Laser pulses are an intriguing tool for driving non-adiabatic processes at surfaces. Amongst others, they may be utilized for tailoring adsorbed molecules or the surfaces themselves with the aim of custom-made properties that cannot be achieved under equilibrium conditions. We advance the microscopic understanding of the fundamental steps involved in such processes and the details of the dynamics induced by fs-lasers on specific surface sites by a real-space analysis of the resulting products and structures on the sub-nanometer scale, combining short-pulse lasers with scanning tunnelling microscopes. The microscale understanding of the influence of the immediate environment on laser-driven processes, may be used to tailor it for a desired outcome. In this talk, I will present our recent advances in the field.
		Chair: Christof Aegerter, Universität Zürich
09:45	25	Science Education in an International Context
		Sascha Marc Schmeling, Head of Teacher and Student Programmes, CERN, Geneva
		CERN is one of the oldest European intergovernmental organisations. In summer 1953, the final draft of the CERN Convention was agreed upon and it laid out the ways its Member States would contribute, as well as its commitment to the dissemination of the research results, international peaceful collaboration, and the education of the scientists of tomorrow. From Mach's first definition of the "Nature of Science" to today's challenges, the field of science education has evolved significantly and its importance for future generations has grown. This presentation will highlight the Organization's current involvement in education and its research including links to national efforts, as well as science outreach, and give a personal outlook and ideas for science education on an international scale.

10:30		Poster Award Session
10:45		Coffee Break
		Sustainable Research in Physics Moderation: Hugo Zbinden, Université de Genève
11:15	26	Panel Discussion
		Introduction, the carbon footprint of research in Switzerland, sustainability at EPFL Muranaka Tamoko, EPFL Particle Physics, Technologies for sustainable accelerators Mike Seidel, PSI Villigen + EPFL The efforts at ETHZ Anna Soter, ETH Zürich A grassroot approach to sustainable research Philipp Treutlein, Universität Basel
12:00		Topical Sessions
14:30		CONFERENCE END

History and Philosophy of Physics

Wednesday, 06.09.2023, Room 114

Time	ID	HISTORY AND PHILOSOPHY OF PHYSICS
Time	U	Chair: Bruno Besser, ÖAW Graz
		Chair. Bruno Besser, OAW Graz
14:30	41	Richard Kirwan and the Power of Magnetic Order
		Reinhard Folk, Johannes Kepler Universität Linz
		The Irish scientist Richard Kirwan (1733 - 1812) is well known as chemist, mineralogist, geologist, and meteorologist. Less established is, his contribution to ferromagnetism. His name is connected to the so called <i>Rotation Hypothesis</i> which considered natural magnets as solids which contain ro- tatable 'atomic' magnets rather than 'magnetic' fluids perfusing through the solid as in the so called <i>Separation Hypothesis</i> . Kirwan considered magnetism in solids as ordering phenomenon like crys- tallization due to attracting and repelling interactions. In the Bohr Sommerfeld quantum mechanics this idea were revived by Alfred Landé's Synchronism and Walter Schottky's Rotoactivity of circling electrons. Surprisingly after Pauli's spin Kirwan's ideas dropped out of the history of magnetism.
15:00	42	Kaleidoscope of a historical physics collection
		Franz Sachslehner, Universität Wien, Fakultät für Physik
		The historical physics collection at the University of Vienna offers numerous possibilities to study basic concepts and important developments of physics. Historical instruments and objects come to life in experiments. Many of them still work and make fascinating experiments. The following devices are shown briefly by means of photos or video: the flame probe with the electroscope, the Atwood machine, Lippich's falling apparatus, Maxwell's wheel, birefringence in artfully designed gypsum crystals and stressed glasses, the string galvanometer, the Page motor, a grating spectrograph, a vibration microscope and a tuning fork interrupter. Where it is helpful, some mathematics is also given.
15:30	43	"Austrian" Observatories in the Travelogues of Johann III Bernoulli
		Bruno Besser, Nora Pärr, Österreichische Akademie der Wissenschaften
		Johann III Bernoulli, director of the Berlin Observatory, paid tribute to the observatories of pres- ent-day Austria with detailed descriptions of their construction and instruments in his extensive travel descriptions. Maximilian Hell (1720 - 1793), Vienna University Observatory Director, as well as Placidus FixImillner (1721 - 1791), Director of the "Astronomical Tower" of Kremsmünster Abbey in Upper Austria, are of particular interest. In terms of institutional history, not only the observatories will be dealt with, but also Bernoulli's long-standing place of activity, the Berlin Academy of Sciences. Networking between the research institutions mentioned was given by Hell's participation in the world-wide project for the observa- tion of the transit of Venus in 1761 and 1769. The discovery of Uranus in 1781 led to lively corre- spondence. A high degree of internationality was achieved through the publication of astronomical yearbooks.

16:00	44	Daniel Bernoulli's Research in Basel and the "Physikalisches Kabinett" in the "Stachelschützenhaus" <i>Martin C. E. Huber (Zürich), Martin Mattmüller, Ernst Meyer, Friedrich-K. Thielemann (Basel)</i> Daniel Bernoulli (1700 - 1782) studied initially medicine in Basel, Heidelberg, and Strasbourg, concluding with a thesis on respiration (containing experimental and mathematical approaches). During his scientific life he worked across many disciplines (with a focus on physics and its mathe- matical foundations). In 1725 he was appointed to the St. Petersburg Academy. In 1726 Leonhard Euler followed him to St. Petersburg. Later on Bernoulli intended to return to Basel for a chair in physics. But as appointments to professorships there were (in those days) often taken by drawing lots among the top three candidates, Bernoulli was first successful in 1733 with obtaining a profes- sorship in anatomy and botany, being offered finally a professorship in physics in 1750. He then taught physics until 1776. His most comprehensive work, the "Hydrodynamica" of 1733/1738 achieved a fundamental ad- vance in hydrodynamics and laid the foundation for later progress, which included the well-known "Bernoulli Principle", relating the speed of a fluid to its potential energy. He published 74 papers and won a total of 10 Grand Paris Academy Prizes for topics in astronomy, physics, and applica- tions to nautical problems. Bernoull's predecessor as professor of physics at the University of Basel, Benedict Staehelin (1695 - 1750), had started a collection of physics devices and instruments that he had acquired for demonstration purposes. These pieces were set up in the "Physics Cabinet" (the south wing of the "Stachelschützenhaus", built in 1729). Bernoulli added many more apparatuses for his research and lectures on physics – among them the experiment for the "Demonstration of the Hydrostatic Paradox" – which demonstrates that the pressure in a liquid is independent of the shape of the ves- sel and depends only on the height of the liquid col
		Cabinet" now belong to the Historical Museum, and are exhibited at different locations in the city.
16:30		END; Coffee Break

Nanotechnology: From Hype to Application

Tuesday, 05.09.2023, Room 114

		- · ·
Time	ID	NANOTECHNOLOGY: FROM HYPE TO APPLICATION Chair: Peter Korczak, Christian Teissl, Werkstätte Wattens, Andreas Fuhrer, IBM Rüschlikon, Thilo Stöferle, IBM Rüschlikon
	= 1	
14:00	51	Introduction
		Thilo Stöferle & Andreas Fuhrer
14:10	52	Nanosurf: 25 years of riding the nanotechnology wave
		Dominik Ziegler, Nanosurf
		Emerging as a startup from the University of Basel, Nanosurf is today a leading company offering innovative solutions for nanoscale metrology in life sciences, material sciences, and industry. The talk highlights the history and successes of Nanosurf over the last 25 years, and shows how scanning probe microscopes have turned into a widely used tool to visualize nanoscale phenomena, that advance nanoscale research and enable many future technologies.
14:30	53	BTO-enhanced silicon photonics – a scalable PIC platform based on Pockels modulation
		Thomas Kornher, Lumiphase AG
		Controlling light with electrical signals is one of the most critical functions in a photonic integrat- ed circuit for optical communication, sensing, and switching. Lumiphase develops and manufac- tures photonic chips powered by a unique BTO Pockels technology. The BTO material properties translate into electro-optical modulation functionalities with benefits in cost, speed, transparency, power-consumption, and footprint compared to standard silicon solutions. The Pockels-enhanced chips enable next-generation transceivers and a wide range of other photonic applications ranging from sensing, over data processing to switching, where large numbers of ultra-efficient, integrated phase shifters are needed.
14:50	54	Scratch resistance furniture films
		Peter Fankhauser, Senco Research & Development GmbH & Co. KG
		In the talk, current application examples of nanotechnology in furniture lacquers will be presented. The high demands on furniture surfaces can be achieved by using nanoscale particles in furniture lacquers. These nanocomposite lacquers are characterised by excellent mechanical and viscoe-lastic properties. Among other things, scratch and abrasion resistance are improved and chemical resistance is increased. The inorganic nanoparticles firmly integrated into the lacquer matrix do not impair the transparency and gloss of the furniture lacquer.
15:10	55	3D printing of miniaturized glass devices
		Cesare Alfieri, Andrea Lovera, Femtoprint
		The unique mechanical and thermal properties of glass, combined with transparency, electromag- netic immunity and biocompatibility, significantly enrich the possibilities of micro- and nanofabri- cation in high-tech industrial fields, from Photonics to Life Sciences, from Medicine to Quantum. However, the capability to miniaturize complex glass shapes with the required precision still rep- resents a challenge.
		The FEMTOprint technology platform offers cost-effective and scalable 3D fabrication of glass devices with sub-micron accuracy. We demonstrate the versatility of the FEMTOprint production process presenting the realization of fiber and lens arrays, microfluidic chips, biosensors and ion traps. We comment on the accuracy achieved and highlight the metrology challenges involved in the industrialization of miniaturized components.

15:30	56	Designing optical thin films using polarized light
		David Pires, Rolic Technologies
		Rolic is a cutting-edge technology firm, subsidiary of BASF and headquartered near Basel. The company develops and sells functional materials for display, optical and opto-electrical applica- tions. Using its patent-protected LCMO (Light Controlled Molecular Orientation) technology, Rolic can manipulate surfaces on a nanoscale level using polarized light to produce distinctive optical effects by controlling the arrangement of liquid crystal molecules. The multidisciplinary development projects undertaken by our R&D department involve material science and device engineering across a range of fields, including display, light management, energy harvesting, and sensing. To support the conception process, we have developed a polarization optics modelling platform, which enables accurate modelling and optimization of the optical stacks.
15:50	57	Industry and Academia: The Power of Partnership in Scientific Discovery
		Silke Traut, Dectris
		Dectris emerged from one of the most significant experiments in particle physics: the CMS experiment. PSIs visionary efforts to transfer the detection technology to a company made photon counting detectors available to a broader scientific community. In my talk, I will elaborate on the impact this has made on structural analysis in life or material science, as well as plasma spectroscopy in energy science. For the next generation detectors multiple technologies must be developed and mastered. We partner with universities and companies on fast data pipelines, novel materials, AI, and Micro-Nanotechnologies. This will allow us to bring back detectors with unique new properties to the scientific community for novel research.
16:10	58	Challenges in bringing a manual laboratory technology closer to the semiconductor fab
		Samuel Sonderegger, Christian Monachon, Attolight
		Cathodoluminescence (CL) has been around even before the advent of electron microscopy and is well known for its capability to detect crystallographic defects in compound semiconductors at the nanometer scale. At the same time, CL is also well known to be a sometimes difficult to use laboratory technology. During this presentation we will look into key aspects between a lab and a fab technology and present key milestones and challenges we met over the last years bringing the CL technology closer to the semiconductor fab by automating it for specific applications.
16:30		Coffee Break
17:00	59	NanoFrazor technology: enabling advanced nanodevices and unique applications
		Fabian Könemann, Heidelberg Instruments Nano
		The range of applications for t-SPL is broad, spanning from ultra-high resolution 2D and 3D pat- terning, to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. Overlay is shown to work with sub-5 nm precision even for nanowires and 2D material flakes that are buried under resist layers, thanks to the highly sensitive in-situ reading capability of the NanoFrazor tool. These unique capabilities allow for the realization of novel nanodevices with emerging 1D and 2D materials, and for nanometer-precise 3D (gray- scale) surfaces in optics and fluidics.

17:20	60	XRnanotech - Nanostructured Diffractive Optics – New Opportunities at Short Wavelengths
		Adam Kubec, XRnanotech
		X-rays offer unrivaled insights into intricate samples with their high penetration and sensitivity, necessitating constant X-ray-optics advancement. Nanostructured-diffractive-optics, facilitated by recent nanotechnology, have catalyzed major scientific discoveries in premier research-facilities. Utilizing nanolithography techniques like electron-beam-nanolithography, two-photon polymerization, and direct laser writing, we've opened new doors in the field. This has led to the creation of transmission achromatic X-ray optics, ultra-high resolution zone plates, and blazed reflection gratings from materials like diamonds, metals, and 3D nanoprinted polymers. This offers wide-ranging X-ray energy efficiency and unique optical functionalities. We'll showcase recent developments, including high-resolution X-ray zone plates, silicon reflection gratings, and high-stability diamond gratings, demonstrating nanolithography's potential in enhancing X-ray research.
17:40	61	Big Data and Artificial Intelligence in PVD coating development
		Arnd Müller, Keith Thomas, Balzers Oerlikon
		Hard coatings produced by physical vapour deposition (PVD) are used in a wide range of applica- tions. Coated cutting tools for instance enable more severe cutting conditions and/or longer life, resulting in lower cost per workpiece. The development and improvement of such coatings can involve combinatorial approaches, but is still usually done through conventional trial and error. Technologies such as Optical Character Rec- ognition (OCR) or image analysis help to generate a broad dataset that can be used as a starting point for future developments based on machine learning. This talk will show some examples of how this is already being used.
18:00	62	PyzoFlex® matrix: How to combine printed ferroelectric sensors and organic transistors for vital parameter, tactile pressure and proximity sensing
		Barbara Stadlober ¹ , Andreas Petritz ¹ , Esther Karner-Petritz ¹ , Herbert Gold ¹ , Bernhard Lamprecht ¹ , Manfred Adler ¹ , Andreas Tschepp ¹ , Martin Zirkl ¹ , Takafumi Uemura ² , Teppei Araki ² , Micael Charbonneau ³ , Romain Coppard ³ , Marco Fattori ⁴ , Eugenio Cantatore ⁴ , Tsuyoshi Sekitani ² ¹ Joanneum Research Forschungsgesellschaft, ² Osaka University ³ CEA-LITEN, ⁴ Eindhoven University of Technology
		In the context of ultraflexible scalable nanosensors I will present several combinations of ferroelectric polymer transducers based on P(VDF:TrFE) with organic thinfilm transistors (OTFTs) fabricated on (ultra)flexible substrates for tactile pressure sensing, proximity detection, pulse rate as well as blood pressure monitoring. After presenting the basics of our printed ferroelectric sensor technology PyzoFlex® I will discuss an ultra-compliant active-matrix tactile pressure sensor, where OTFTs are monolithically integrated with the ferroelectric transducers on a just 1 μ m thin polymer substrate. The final demonstration is an in-pixel amplified flexible proximity-sensing surface for work security and robotics based on an all-printed OTFT-backplane with an all-printed pyroelectric sensor frontplane.

18:20	63	ARTIDIS technology revolutionizes cancer care by using physical characterization of tissue <i>Philipp Oertle, ARTIDIS</i> Aggressive & Treatment Resistant cancers that metastasize kill > 90 % of cancer patients. Until now there have been no diagnostics to detect the tumors' ability to metastasize. ARTIDIS can ad- dress this unmet need and improve cancer care. The ARTIDIS Imaging System, based on Atomic Force Microscopy (AFM), provides quantitative measurements of tissues' Nanomechanical Signa- ture. The Nanomechanical Signature informs the tissue phenotype, the sum of functional proper- ties of different tissue components like cells, matrix and immune landscape and identifies imminent disease aggressiveness based on presence of soft and thus metastatic cells. Published studies show uniform but distinct stiffness distribution between normal and benign tissues, while malignant cells and their tumor microenvironment (TME) have variable stiffness and highly aggressive (i.e. potentially metastatic) cells present a lower stiffness peak. Additional studies show that patients with soft tumors are more likely to be successfully treated with chemotherapy / immunotherapy. Furthermore, there is evidence showing that proper dosing of radiation treatment based on stiff- ness characterization enhances systemic antitumor immune responses by overcoming inhibitory tissue. To address these unmet needs, ARTIDIS is performing ongoing clinical studies to bring AFM based technology through regulatory approval and to clinics for the first time.
		This talk will also be presented as poster.
18:40		END
19:00		Postersession with Apéro

ÖPG Thesis Awards

Wednesday, 06.09.2023, Room 115

Time	ID	ÖPG THESIS AWARDS
	-	Chair: Benjamin Klebel-Knobloch, TU Wien
14:30	71	Creating The World's Toughest Obstacle Course for Magnetic Flux Quanta in High-T $_{\!_{\rm C}}$ Superconductors
		Bernd Aichner ¹ , Lucas Backmeister ¹ , Max Karrer ² , Katja Wurster ² , Philipp A. Korner ¹ , Christoph Schmid ² , Sandra Keppert ³ , Reinhold Kleiner ² , Johannes D. Pedarnig ³ , Edward Goldobin ² , Dieter Koelle ² , Wolfgang Lang ¹ ¹ Faculty of Physics, University of Vienna, Austria ² Physikalisches Institut, Center for Quantum Science (CQ) and LISA+, Universität Tübingen, Germany ³ Institute of Applied Physics, Johannes Kepler University Linz, Austria
		Controlling the movement of magnetic flux quanta in high-temperature superconductors such as YBa ₂ Cu ₃ O _{7.5} is essential for most applications. It demands the introduction of artificial defect structures that serve as obstacles for the moving flux quanta. Using a helium ion microscope's well-controllable focused beam, we create ultra-dense periodic
		patterns of hills and hollows in the potential landscape in which the vortices move. This artificial nano-scaled obstacle course for magnetic flux-quanta leads to exciting electronic transport effects, such as commensurability effects, magnetic vortex caging and the emergence of an ordered Bose glass phase. Besides their potential for superconductivity research, these complex pinning landscapes for mag-
45.00	70	netic flux quanta are an essential step toward low-dissipative superconducting electronics.
15:00	72	Holographic QCD and the Anomalous Magnetic Moment of the Muon
		Josef Leutgeb, TU Wien
		The primary source of the estimated error in the standard model's prediction for the anomalous magnetic moment of the muon originates mainly from hadronic vacuum polarization and hadronic light-by-light scattering. The latter is dominated by the exchange of neutral pseudoscalars and axial-vector mesons. By employing holographic QCD, we can compute these contributions and address the problem of most phenomenological models in meeting the established short-distance constraints of the hadronic light-by-light tensor. Notably, this includes the constraint implied by the axial anomaly identified by Melnikov and Vainshtein.
15:30	73	Understanding complex oxide surfaces at the atomic level through ncAFM and DFT
		Igor Sokolović, Institute of Applied Physics and Institute of Microelectronics, TU Wien
		Solid oxide compounds constitute the vast majority of all solids on Earth. Their variety is responsible for a wide range of intriguing physical properties, and their abundance opens a possibility for wide-spread technical use. Each solid interacts with the environment through the exposed surfaces, and Surface Science aims to understand these processes and a fundamental level. The structure of a surface can be directly recorded with non-contact atomic force microscopy (ncAFM) with single-atom precision. The observed configurations can be theoretically modeled with quantum mechanics through density functional theory (DFT). In this talk, I will introduce and demonstrate these state-of-the-art Surface Science techniques on a surface of a prototypical TiO ₂ oxide.
16:00		END

KOND

Tuesday, 05.09.2023, Room Aula 033

Time	ID	KOND I: (THERMAL) TRANSPORT IN 2D SYSTEMS Chair: Ilaria Zardo, Universität Basel
14:00	101	Modern theory of thermal transport in solids
		Michele Simoncelli *, Nicola Marzari Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne *Current address: Theory of Condensed Matter Group of the Cavendish Laboratory, University of Cambridge (UK)
		We explore the atomistic mechanisms of thermal transport in solids, extending established formu- lations and developing the computational framework to solve them. Starting from a density-matrix formalism, we show how the phonon Boltzmann equation is missing a tunneling term that becomes pivotal in disordered or defective materials. Thus, we derive a unified 'Wigner formulation' that comprehensively describes heat conduction in crystals, glasses, and intermediate cases such as thermoelectrics. Also, we show how in crystalline conductors the microscopic transport equations can be coarse grained into a set of viscous heat equations that describe both Fourier diffusion and heat hydrodynamics; thus, we employ these to rationalize pioneering experiments, and to devise strategies to amplify and control heat hydrodynamics.
14:30	102	Thermodynamic transport fingerprints in Twisted monolayer-bilayer graphene
		Jin Jiang ¹ , Sheng Chen ¹ , Zekang Zhou ¹ , Kenji Watanabe ² , Takashi Taniguchi ³ , Mitali Banerjee ¹ ¹ Laboratory of Quantum Physics (LQP), Institute of Physics, EPFL, CH-1015 Lausanne ² Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan ³ International Center for Materials Nanoarchitectonics, National Institute for Materials Science,
		1-1 Namiki, Tsukuba 305-0044, Japan Twisted monolayer-bilayer graphene (TMBG) exhibits renormalized nearly flat bands harboring various exotic physical phenomena. Stacking an additional monolayer graphene on the TMBG paves a new way to extract single particle bandgap, the charge neutrality point (CNP) gap and bandwidth. The Dirac cone in the decoupled monolayer graphene serves as a perfect chemical potential sensor when the Landau levels (LLs) cross the bands, whereas the LLs are well separat- ed and are not hybridized with flat bands. At D = 0.53 V /nm, the isospin flavor symmetry-broken correlated gap at flat-band filling v = 1 is largest and bandwidth is narrowest. This is a versatile tool which can be used in various similar systems to find thermodynamic properties.
14:45	103	Electronic Poiseuille Flow in Hexagonal Boron Nitride Encapsulated Graphene FETs
		с і і
		Tathagata Paul, Wenhao Huang, Mickael L. Perrin, Michel Calame, EMPA In most conductors, diffusive scattering from defects and lattice vibrations results in Ohmic trans- port. Alternatively, transport is ballistic, when the channel dimensions are the smallest length scale. However, when electron-electron interactions are sufficiently strong, charge transport can mimic the viscous flow of fluids. In the current work, we explore this analogy and observe that the elec- trical signatures of viscous effects, characterized by measuring the differential resistance as a function of channel width and effective electron temperature, survives close to room temperature. Our findings open up new directions for designing devices exploiting viscous charge flow such as geometric rectifiers like a Tesla valve and charge amplifiers based on electronic Venturi effect.

15:00	104	Dipole charge density ordering in bilayer semiconductors
		Joel Hutchinson, Jelena Klinovaja, Daniel Loss, Dmitry Miserev, University of Basel
		Advances in the manipulation of van der Waals materials have shown that bilayers offer a unique platform for studying strongly correlated physics in two-dimensions (2D). Bilayers are importantly different from monolayers in that there exist long-range interactions between electrons in both the intra- and inter-layer channels, which differ only slightly. We show that the electronic charge susceptibility has peaks arising from scattering across the Fermi surfaces, not seen in the usual Lindhard function. In a bilayer system, these peaks give rise to an enhanced response of out-of-plane dipoles to local potential differences across the layers. This response is not diminished by screening and becomes larger in the low-density limit.
15:15	105	Probing the electronic structure of chemically-induced van der Waals heterostructures in V TaS,
		Wojciech Pudelko ¹ , Eduardo Bonini Guedes ¹ , Johan Chang ² , Ron Cohn-Wagner ² , Julia Küspert ² , Hang Li ¹ , Huanlong Liu ² , Francesco Petocchi ³ , Nicholas Clark Plumb ¹ , Andreas Schilling ² , Philipp Werner ³ , Karin von Arx ² ¹ Paul Scherrer Institut ² Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich ³ University of Fribourg
		Layered transition metal dichalcogenides exhibit numerous exotic electronic phases, which are known to be highly sensitive to minute changes in virtually any external parameter. We found that vanadium intercalation into the TaS ₂ (V _x TaS ₂) leads to intriguing changes in its properties. Upon increasing x, the electronic structure evolves from the pure 2H phase known for its charge density wave (CDW) and superconductivity to a pure 1T structure characterized by CDW and Mott interactions, with a clear coexistence of both at intermediate range. By exploiting V intercalation as a means to assemble 2H/1T layered heterostructures, we are granted a spectroscopic window into each layer type, as well as the interplay between them.
15:30	106	Understanding pairing mechanism in magic angle twisted trilayer graphene
		Zekang Zhou ¹ , Jin Jiang ¹ , Kenji Watanabe ² , Takashi Taniguchi ³ , Mitali Banerjee ¹ ¹ Laboratory of Quantum Physics (LQP), Institute of Physics, EPFL, CH-1015 Lausanne ² Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan ³ International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
		Flat bands in twisted graphene systems offers plethora of strongly correlated states, among these, correlated insulator, superconductor and chern insulator are to name of few. Twisted tri- layer graphene has shown robust superconductivity which drastically deviates from conventional weak-coupling BCS type superconductivity. In particular, twisted trilayer graphene may even host prag- matic example of strong coupling superconductivity – BEC type superconductivity. A full understanding of such superconductivity still needs more experimental works. In this talk, I will present our transport data of magic angle twisted trilayer graphene and highlight its unconventional nature.

13.43	107	
		Paritosh Karnatak ¹, Zarina Mingazheva ¹, Kenji Watanabe ², Takashi Taniguchi ³, Helmuth Berger ⁴, László Forró ⁴, Christian Schönenberger ¹ ¹ Department of Physics, University of Basel, CH-4056 Basel
		² Research Center for Functional Materials, National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
		³ International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan ⁴ Institute of Condensed Matter Physics, EPFL, CH-1015 Lausanne
		We perform tunnel spectroscopy on NbSe ₂ by utilizing MoS ₂ or hexagonal Boron Nitride (hBN) as a tunnel barrier. We observe subgap excitations and probe their origin by studying various heterostructure designs. We show that the edge of NbSe ₂ hosts many defect states. By isolating the NbSe ₂ edge and comparing MoS ₂ and hBN tunnel barriers, we suggest defects in MoS ₂ as the origin of the subgap features. We study the evolution of the subgap excitations and reveal both singlet and doublet type ground
		states, which indicates a competition of various energy scales. Based on nearly vanishing g-factors or avoided-crossing of subgap excitations we also highlight the role of strong spin-orbit coupling.
16:00	108	Fabry-Perot interferometry in bi-layer graphene
		Mario Di Luca ¹ , Kenji Watanabe ² , Takashi Taniguchi ³ , Mitali Banerjee ¹ ¹ Laboratory of Quantum Physics (LQP), Institute of Physics, EPFL, CH-1015 Lausanne ² Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan ³ International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
		In solid-state systems, strong correlations cause the emergence of quasiparticles that are immune to local environmental perturbations. An example of such a system is the Quantum Hall Effect, in which electrons confined in two dimensions and subjected to a high perpendicular magnetic field give rise to fractionally charged quasiparticles (anyons) that are topologically protected. The statistics of anyons can be studied by interferometry techniques. To study the statistical behavior of anyons we use bilayer graphene in Fabry-Perot interferometer geometry. In this paper I will describe the techniques used in the fabrication process and some interferometry results.
16:15	109	In-situ buried interface passivation enables efficient and stable inverted perovskite solar modules
		Virginia Carnevali, Lin Li, Mingyang Wei, Nikolaos Lempesis, Lorenzo Agosta, Mathias Dankl, Ursula Roethlisberger, Michael Graetzel, EPFL
		Scaling-up perovskite solar cells (PSCs) is a prerequisite to the adoption of perovskite photovol- taics. However, the performance and stability of perovskite solar modules (PSMs) have lagged behind those of lab-scale PSCs. The development o PSMs requires interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during perovskite deposition. Here, we overcome this limitation with in-situ buried interface passivation – achieved via directly adding a cyanoacrylic acid-based molecular additive into the perovskite precursor solution. The preferential buried interface passivation results in facilitated hole transfer and suppressed surface recombination. We report a power-conversion efficiency (PCE) of 20.3% for inverted-structure PSMs.
16:30		Coffee Break

15:45 107 Origin and nature of defect states coupled to a van der Waals superconductor

Time	ID	KOND II: CUPRATES Chair: Henrik Rønnow, EPF Lausanne
17:00	111	Uniaxial Control of Quantum Matter. Application to Cuprates
17.00		
		Gediminas Simutis, Paul Scherrer Institut, 5232 Villigen PSI
		Quantum matter is characterised by competing and intertwined orders. Here we will present our recent advances in using uniaxial pressure as a clean "surgical" tool to tune quantum phases while simultaneously obtaining microscopic insights via scattering experiments. To achieve the fine-tuning, we have designed a new in-situ uniaxial device for large-scale facility research based on an actuator-motor mechanism, efficient feedback loops and the sample-holder design enabling rapid exchange of the samples. I will demonstrate the advanced capabilities of this device by reporting the control of charge and structural degrees of freedom in an archetypical cuprate.
17:15	112	A strong-coupling mechanism for the pseudogap from spin fluctuations
		Friedrich Krien, Patrick Chalupa-Gantner, Karsten Held, Alessandro Toschi, Paul Worm, TU Wien
		The mechanism of the pseudogap observed in hole-doped cuprates remains one of the central puzzles in condensed matter physics. We analyze this phenomenon via a Feynman-diagrammatic inspection of the Hubbard model. Our approach captures the pivotal interplay between Mott localization and Fermi surface topology <i>beyond</i> weak-coupling spin fluctuations. Our analysis naturally explains puzzling features of the pseudogap observed in experiments, such as Fermi arcs being cut off at the antiferromagnetic zone boundary and the subordinate role of hot spots.
17:30	113	Investigating the periodic electronic modulations in Bi ₂ Sr ₂ Ca ₁ Cu ₂ O _{8+δ} by Scanning Tunneling Microscopy
		Tejas Parasram Singar ¹ , Genda Gu ² , Ivan Maggio-Aprile ¹ , Christoph Renner ¹ ¹ University of Geneva, ² CMPMS Division, Brookhaven National Laboratory
		In this work, we will discuss our latest investigations of the Bi ₂ Sr ₂ Ca ₁ Cu ₂ O ₈₊₈ cuprate superconductor using Scanning Tunneling Microscopy (STM). We focus on the atomic scale periodic charge modulations as a function of doping and magnetic field. Specifically, we try to address the nature and origin of the 4a ₀ × 4a ₀ and (4/3)a ₀ × (4/3)a ₀ modulations (a ₀ : crystallographic unit cell) using different acquisition modes of STM. The periodic conductance modulations we observe do not reveal the characteristic features usually associated with charge density waves in STM experiments, suggesting they are rather quasiparticle interferences.
17:45	114	High-T _c cuprates – story of two electronic subsystems
		Neven Barisic, TU Wien, Austria & PMF Zagreb, Croatia
		Based on now well-established universal transport and optical conductivity properties, we show that the phenomenology of cuprates across the phase diagram is fully captured by the charge conservation relation: $1 + p = n_{\rm loc} + n_{\rm eff}$ with the superfluid density that simply corresponds to: $\rho_{\rm S} = n_{\rm eff} \cdot (O_{\rm S} \cdot n_{\rm loc})$ where p is doping, $n_{\rm eff}$ is the carrier density, which can be directly determined experimentally, while $O_{\rm S}$ is a compound-dependent constant. We attribute the distinction between low- and high-T_c cuprates to the fine-tuning of the p-d-p fluctuation of the Cu-localized hole $(n_{\rm loc})$ visiting the neighboring planar-oxygen atoms, which is the reason for the material-dependence embodied in the constant $O_{\rm S}$.

18:00	115	Murunskite: A Bridge Between Cuprates and Pnictides
		 Trpimir Ivsic ¹, Davor Tolj², Ivica Zivkovic ², Konstantin Semeniuk, Eduardo Martino, Ana Akrap ³, Priyanka Reddy ⁴, Benjamin Klebel-Knobloch ¹, Ivor Loncaric ⁴, László Forró ², Neven Barisic ^{1,4}, Henrik Rønnow ², Denis Sunko ⁴ ¹ Technische Universitat Wien, ² EPFL, ³ University of Fribourg, ⁴ University of Zagreb Exploring novel materials as the candidates for unconventional superconductors can help to understand the mechanism of this exotic phenomenon but also lead to synthesis of compounds with important technological applications. The main compound of interest is murunskite, a material isostructural to iron-based superconductors with iron and copper occupying the same crystal site. I will discuss the synthesis methods of single crystals and measurements of structural, electronic and magnetic properties. Murunskite structure has been successfully altered by substitution and doping on all three crystallographic positions. Effects on the electronic and magnetic properties towards the metallization will be discussed.
	446	cancelled
18:15	117	Cuprates in Magnetic Field
		 Benjamin Klebel-Knobloch¹, Neven Barisic^{1,2}, Osor S. Barisic³, C. M. N. Kumar¹, Petar Popcevic³, Wojtek Tabis^{4,1} ¹ TU Wien, ² PMF Zagreb, Croatia, ³ Institute of Physics, Zagreb, Croatia ⁴ AGH University of Science and Technology, Krakow, Poland We investigate the magnetic response on transport properties in cuprates. Firstly, we show that the Hall coefficient in the low-field/high-temperature regime is accurately described by Boltzmann transport equations. Secondly, we validate Kohler's rule for the magnetoresistance across the phase diagram. Thirdly, we determine that field promoted charge density wave correlations at p ~ 0.12 doping reconstruct the Fermi surface from arcs to a pocket. Remarkably, the high-field/ low-temperature transport properties agree with those calculated for the Fermi surface determined by quantum oscillations. Finally, Umklapp scattering emerges as the dominant process in cuprates' phase diagram.
18:30	118	Ionic effects in cuprates: from Fermi arcs to superconductivity
		Denis Sunko, Department of Physics, Faculty of Science, University of Zagreb Extensive experimental evidence indicates that the mobile carriers in the normal state of high-T _c superconducting cuprates are a Fermi liquid with practically the same transport parameters for all compounds and dopings. A comprehensive theoretical framework is laid out to explain such an outcome, despite the large Coulomb scales affecting the mobile carriers, and despite the super- conducting planes being two-dimensional. Conduction occurs via the O 2p and Cu 4s orbitals, and NOT through the Cu 3d orbital. Fermi arcs are a simple kinematic projection effect of the local ionic disorder in cuprates, and have nothing to do with carrier interactions at the Fermi energy.
18:45		
19:00		Postersession with Apéro

Wednesday, 06.09.2023, Room Aula 033

Time	ID	KOND III: DEVICES AND APPLICATIONS
		Chair: Aswathi K. Sivan, Universität Basel
14:30	121	High performance bifacial Cu(In,Ga)Se ₂ solar cells with silver promoted low-temperature process
		Shih-Chi Yang, Empa & ETHZ
		Bifacial photovoltaic (PV) systems have shown great promise in generating higher annual energy yields compared to conventional monofacial-based PV systems. They offer advantages in build- ing-integrated PVs, vertically mounted bifacial PVs, and agrivoltaics, with low-carbon emissions and a cost-effective levelized cost of electricity. However, bifacial thin-film solar cells, specifically bifacial Cu(In,Ga)Se ₂ (CIGS) cells, have not kept pace with their monofacial counterparts. The efficiencies of bifacial CIGS cells remain low, hinder- ing their adoption in various applications. Challenges such as the detrimental GaO _x interlayer for- mation at the CIGS/TCO (transparent conductive oxide) interface during high-temperature deposi- tion have degraded device performance, leading to stagnation in the development of TCO-based CIGS devices. To overcome these limitations, a groundbreaking study introduced an Ag-promoted low-temperature CIGS deposition process. This innovative approach enabled high-quality CIGS growth at lower temperatures, preventing oxidation reactions at the CIGS/TCO interface. It re- sulted in higher Ga gradings, enhancing carrier collection under rear illumination. Optimizing the substrate temperature achieved a record bifacial CIGS solar cell with efficiencies of 19.77 % (front) and 10.89 % (rear) under one-sun illumination, independently certified by Fraunhofer ISE. Additionally, the study directly fabricated bifacial CIGS solar cells on flexible substrates without lift-off process, offering scalability and cost reduction for larger-scale production. Furthermore, the demonstration of the first-ever bifacial perovskite/CIGS tandem solar cell in a 4-terminal configura- tion achieved a power generation density of 28.0 mW/cm ² BiFi300, opening possibilities for various device architectures. These advancements hold great potential for the photovoltaic community, offering high performance and expanding the range of clean and sustainable energy applications.
	422	cancelled
15:00	123	Thermal circuit elements with Telescopic nanowires
		 Yashpreet Kaur ¹, Ilaria Zardo ¹, Saeko Tachikawa ¹, Milo Yaro Swinkels ¹, Matteo Camponovo ¹, Miquel Lopez-Suarez ², Anna Fontcuberta I Morral ³, Riccardo Rurali ² ¹ University of Basel ² Institut de Ciencia de Materials de Barcelona (ICMAB–CSIC) ³ Laboratory of Semiconductor Materials, Institute of Materials, EPFL Heat dissipation has become a critical problem in the performance of electronic devices, thus, reducing their lifespans. Therefore, to manipulate and control heat, thermal circuit elements analogous to electronic ones like thermal diodes, transistors, and thermal logic gates are needed. In our current research, we have experimentally studied telescopic nanowires for their thermal rectification capabilities giving a rectification ratio of up to 8 % as a function of applied temperature bias, thus, exhibiting the thermal diode effect. This is the first experimental study on telescopic nanowires indicating rectification and an important contribution towards the development of thermal circuit elements.

15:15	124	Chemical and structural characterization of tannin-furanic foams using X-Ray micro-CT, FTIR imaging and UV Resonant Raman scattering
		Maurizio Musso ¹ , Diana Bedolla ² , Raphael J. F. Berger ¹ , Francesco D'Amico ² , Giulia Saccomano ² , Thomas Schnabel ³ , Thomas Sepperer ³ , Lisa Vaccari ² ¹ University of Salzburg, Department of Chemistry and Physics of Materials ² Elettra - Sincrotrone Trieste S.C.p.A. ³ Forest Products and Timber Construction Department, Salzburg University of Applied Sciences
		Tannin-furanic foams are green lightweight materials, presenting quite good compression re- sistance and thermal insulation, and being suitable as a wastewater treatment agent, therefore getting more attention as alternatives to oil-based lightweight materials. Within the Interreg V-A Italy-Austria project ITAT1059 InCIMa4, and within the CERIC proposal 20217081, mechanically and structurally improved tannin-furanic foams have been characterized by the complementary use of infrared spectroscopy and UV Resonance Raman spectroscopy to study similarities and differences in their chemical structures. Additionally, their internal tridimensional micro-architec- ture was investigated by synchrotron radiation computed micro-tomography (SRµCT) to assess porosity based on the relative abundance of voids, demonstrating differences in pore network and pore size distribution.
15:30	125	Understand the photoinduced phase transition of the monoclinic VO_{2} with the nonequilibrium <code>DMFT</code>
		Jiyu Chen, Francesco Petocchi, Philipp Werner, University of Fribourg
		The ultrafast dynamics in the quantum many-body systems introduces the novel photoinduced phase transition (PIPT) to the family of quantum phase transitions. In the VO ₂₁ although the thermal-induced metal-to-insulator transition due to the lattice distortion has been explained with cluster DMFT since 2005, it was verified only a few years ago in the experiment that the photoexcitation is also able to induce the PIPT from the insulating phase to a transient metal state without crystallographic change. In our work, with the state-of-the-art realistic nonequilibrium DMFT simulation, we consistently demonstrated the strategies of the ultrafast in-gap charge carriers, which are sensitive to the frequency and polarization of the laser pump.
15:45	126	3D Magnonic Conduits by Direct Write Nanofabrication
		 Sebastian Lamb-Camarena ^{1,2}, Fabrizio Porrati ³, A. Kuprava ³, Qi Wang ⁴, Michal Urbánek ⁶, Sven Barth ³, Denys Makarov ⁶, Michael Huth ³, Oleksandr V. Dobrovolskiy ¹ ¹ Nanomagnetism and Magnoniocs, Faculty of Physics, University of Vienna, Boltzmanngasse 5, AT-1090 Vienna ² Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, AT-1090 Vienna ³ Physikalisches Institut, Goethe-Universität, Max-von-Laue-Str. 1, DE-60438 Frankfurt am Main ⁴ School of physics, Huazhong University of Science and Technology, Wuhan 430074, China ⁵ CEITEC BUT, Brno University of Technology, CZ-61200 Brno ⁶ Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, Dresden, Germany
		Magnonics is a rapidly developing domain of nanomagnetism, with application potential in infor- mation processing systems. Realisation of this potential and miniaturisation of magnonic circuits requires their extension into the third dimension. However, so far, magnonic conduits are largely limited to thin films and 2D structures. Here, we introduce 3D magnonic nanoconduits fabricated by the direct write technique of focused-electron-beam induced deposition (FEBID). We use Brillouin light scattering (BLS) spectroscopy to demonstrate significant qualitative differences in spatially resolved spin-wave resonances of 2D and 3D nanostructures, which originates from the geomet- rically induced non-uniformity of the internal magnetic field. This work demonstrates the capability of FEBID as an additive manufacturing technique to produce magnetic 3D nanoarchitectures and presents the first report of BLS spectroscopy characterisation of FEBID conduits.
16:00		
16:30		Coffee Break

Time	ID	KOND IV: VARIA
17.00		Chair: Maurizio Musso, Universität Salzburg
17:00	131	Non-thermal superconductivity in photo-doped multi-orbital Hubbard systems
		Sujay Ray, Philipp Werner, University of Fribourg
		Superconductivity in laser-excited correlated electron systems has attracted considerable interest due to reports of light-induced superconducting-like states. We explore the possibility of non-thermal superconducting order in strongly interacting multi-orbital Hubbard systems, using non-equilibrium dynamical mean field theory. We find that a staggered η -type superconducting phase can be realized on a bipartite lattice in the high photo-doping regime, if the effective temperature of the photo-carriers is sufficiently low. The η superconducting state is stabilized by Hund coupling – a positive Hund coupling favors orbital-singlet spin-triplet η -pairing, whereas a negative Hund coupling stabilizes spin-singlet orbital-triplet η pairing.
17:15	132	Pressure dependence of unconventional superconductivity
		in rare-earth nickel oxides
		Simone Di Cataldo ¹ , Paul Worm ¹ , Liang Si ² , Karsten Held ¹ ¹ TU Wien, ² School of Physics, Northwest University
		Superconductivity in nickelates was discovered only four years ago, and sparked great interest in this family of superconductors. Although the underlying mechanism for superconductivity is still under debate, DTA could successfully predict the occurrence of a superconducting dome. In short, the T _c is inversely proportional to the ratio between the Hubbard interaction <i>U</i> and the hopping <i>t</i> , and might be optimized by a careful tuning of this ratio. Using first-principles calculations, we explore the effect of pressure and doping on the Pr _{1-x} Sr _x NiO ₂ nickelate superconductor. While pressure does not change the interaction <i>U</i> , it increases <i>t</i> up to a factor of two, which has a significant effect on the superconducting T _c .
17:30	133	First-principles modelling of the metal-insulator transition in vanadium dioxide using a bond-centered orbital basis
		Peter Mlkvik, Claude Ederer, Nicola Spaldin, ETH Zürich
		Vanadium dioxide (VO ₂) is a prototypical metal-insulator transition (MIT) material, hosting both intriguing physical phenomena and industrial application potential. The VO ₂ MIT originates from a complex interplay between Peierls-like dimerization and Hubbard-Mott correlations that is difficult to capture with standard theoretical models or computational techniques. Here, we present simulations of VO ₂ using an unconventional set of bond-centered basis functions. Combining density-functional theory (DFT) and dynamical mean-field theory (DMFT) with these orbitals, we provide a complementary view on the interplay of dimerization and electronic correlation in VO ₂ that treats both effects on the same footing.
17:45	134	Mapping out phase diagrams with generative classifiers
		Julian Arnold ¹, Frank Schäfer ², Christoph Bruder ¹ ¹ Department of Physics, University of Basel, ² CSAIL, Massachusetts Institute of Technology
		One of the central tasks in condensed matter physics is the characterization of phase diagrams. Traditionally, this is done by a physicist who identifies a small set of characteristic quantities, like response functions or order parameters, guided by his human intuition. This process can be auto- mated by casting the problem of mapping out a phase diagram as a classification task. We show that such classification tasks are naturally suitable to be solved using generative classifiers. This constitutes an alternative approach compared to discriminative classifiers and benefits from gen- erative modeling concepts native to the realm of statistical and quantum physics, as well as recent advances in machine learning.

18:00	135	Probing ferroelectricity in Zr/Nb-substituted barium titanate relaxors by PFM
		Philipp Münzer ¹ , Marco Deluca ² , Markus Kratzer ¹ , Christian Maier ³ , Klaus Reichmann ³ , Christian Teichert ¹ ¹ Institute of Physics, Montanuniversität Leoben, ² Materials Center Leoben ³ Institute for Chemistry and Technology of Materials, TU Graz
		BaTiO ₃ -relaxors are promising materials for energy storage applications in microelectronics. These lead-free dielectrics are thermally stable and suitable for high-temperature operation due to their broad and high permittivity response and low electric coercivity. Relaxor behaviour is induced by homo- or heterovalent substitution of the central Ti ⁴⁺ ions, which disrupts the long-range ferroelectric order. We investigated ferroelectricity in homovalent (Zr ⁴⁺) and heterovalent (Nb ⁵⁺) substituted polycrystalline BaTiO ₃ relaxors utilizing Piezoresponse Force Microscopy (PFM). We probed spontaneous polarization, conducted local polarization switching, and recorded PFM-hysteresis loops utilizing Switching-Spectroscopy-PFM. The results suggest that indicators of ferroelectricity vanish at different substitution levels and that traces of ferroelectricity can even be found in highly substituted systems.
18:15	136	Spin-polarized electron-hole pair excitations in Co ₃ Sn ₂ S ₂ studied by magnetic circular dichroism resonant inelastic X-ray scattering
		Tianlun Yu, Wenliang Zhang, Yuan Wei, Dariusz Jakub Gawryluk, Loïc Roduit, Vladimir Strokov, Gabriel Aeppli, Thorsten Schmitt, Yona Soh, Paul Scherrer Institute
		$Co_3Sn_2S_2$ is a Weyl ferromagnet ($T_c \sim 177$ K) with kagome layers stacked along its c-axis. A recent resonant inelastic X-ray scattering (RIXS) study with linear polarized X-rays reported correlation driven near-flat band Stoner excitations. However, our RIXS measurements employing a magnetic circular dichroism (MCD) analysis suggests that the reported "near-flat band" is dispersive and its intensity reduces upon approaching T_c . We suggest these excitations correspond to the electron-hole pair excitations between spin-polarized occupied and unoccupied bands that are s directly related to the magnetic order. Furthermore, the MCD RIXS spectrum shows opposite sign compared to spin waves in the ferromagnetic topological metal Fe_3Sn_2 due to the orbital moment involvement.
18:30	137	Tensor network investigation of the finite temperature behaviour of the $J_1 - J_2 - J_3$ Kagome Ising Antiferromagnet
		Afonso dos Santos Rufino, Jeanne Colbois, Frédéric Mila, Samuel Louis Nyckees, EPFL The finite temperature behavior of the Kagome Ising Antiferromagnet with farther neighbor interac- tions (J_1, J_2, J_3) is investigated with the Corner Transfer Matrix Renormalization Group (CTMRG) algorithm. In the parameter region $J_1 > J_3 > J_2 > 0$, the system breaks a \mathbb{Z}_3 rotation symmetry and a \mathbb{Z}_2 translation symmetry in the ground state. These symmetries are restored at higher temperature either in a single first-order transition or through a couple of transitions separated by an intermedi- ate nematic phase, depending on the value of J_2 . In the limit $J_1, J_3 > J_2$, the rotational symmetry is restored in a sequence of first-order transitions where disparator, one has understand from the quantization.
10-45	100	whose discrete character can be understood from the quantisation of the density of extended defects (Domain Walls).
18:45	138	Spin-orbital excitations encoding the magnetic phase transition in the van der Waals antiferromagnet FePS ₃
		Yuan Wei ¹ , Yi Tseng ¹ , Hebatalla Elnaggar ² , Wenliang Zhang ¹ , Teguh Citra Asmara ¹ , Eugenio Paris ¹ , Gabriele Domaine ¹ , Vladimir Strokov ¹ , Luc Testa ³ , Virgile Favre ³ , Andrew Wildes ⁴ , Henrik Rønnow ³ , Frank Groot ⁵ , Thorsten Schmitt ¹ ¹ Paul Scherrer Institut, ² Sorbonne Université, ³ EPFL, ⁴ ILL, ⁵ Utrecht University
		Magnetic van der Waals (vdW) materials offer exciting opportunities to study exotic magnetic phas- es and collective behavior in two-dimensional limits. FePS ₃ is an S = 2 zig-zag quasi-two-dimen- sional antiferromagnetic insulator with a honeycomb lattice, making it an ideal candidate for inves- tigating dimensionality and interlayer coupling on magnetic behavior. In this talk, Resonant inelastic X-ray scattering (RIXS) was used to study spin-orbital excitations in FePS ₃ and their relation to magnetism, revealing the essential role of the trigonal lattice distortion and negative metal-ligand charge transfer. This approach provides a perspective of studying low-energy electronic properties in relation to the magnetic state.

19:00	139	Quantum transport theory in disordered interacting systems: A dynamical mean-field approach
		Jiawei Yan, Philipp Werner, University of Fribourg
		We introduce a non-equilibrium dynamical mean-field theory (DMFT) for studying an inhomoge- neous Anderson-Hubbard lattice that contains both electron-electron interactions and chemical disorders, which are treated on an equal footing. The theory reduces to conventional DMFT in the presence of only electron interactions and to coherent potential approximation (CPA) with only disorders. An 8-site cube is employed to benchmark our method, showing high agreement in the spectral function in both weak and strong coupling cases. A serial double quantum dot sandwiched by two leads under a step-shaped voltage bias is also studied. Our method provides a generic framework for studying quantum transport problems with both interaction and disorder degrees of freedom.
19:15		

Thursday, 07.09.2023, Room Aula 033

Time	ID	KOND V: SUPERCONDUCTIVITY Chair: Ding Peng, PSI Villigen
14:00	141	Driven-dissipative engineering: A generalized fitness criterion for the superconducting transition temperature
		Aline Ramires ¹ , Ramasubramanian Chitra ² , Rui Lin ² ¹ Paul Scherrer Institut, ² ETH Zürich
		Floquet engineering has attracted significant interest given the recent developments in experimen- tal techniques such as ultrafast spectroscopy and the potential to enhance the stability of phases of matter such as superconductivity. Here we explore how an external drive and intrinsic dissipation jointly affect superconductivity. Inspired by the fitness criterion for static superconductors, we rec- ognize the distinct effects of external drives on superconductors based on their commutativity or anticommutativity with the superconducting order parameter within the Floquet-Keldish formalism. Our proposal goes beyond standard mechanisms, such as phonon squeezing and dynamical local- ization. It opens the door for further studies toward driven-dissipative engineering of exotic phases of complex matter in solid-state systems.
14:15	142	Vortex Counting and Velocimetry for Slitted Superconducting Thin Strips
		Barbora Budinská ¹ , Volodymyr Bevz ² , Mikhail Mikhailov ³ , Sebastian Lamb-Camarena ¹ , Stanislava Shpilinska ¹ , Andrii Chumak ¹ , Michal Urbánek ⁴ , Markus Arndt ¹ , Wolfgang Lang ¹ , Oleksandr Dobrovolskiy ¹ ¹ University of Vienna, AT-1090 Vienna ² V. Karazin Kharkiv National University, Kharkiv 61022, Ukraine ³ B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv 61103, Ukraine ⁴ CEITEC, Brno University of Technology, Brno 61200, Czech Republic
		At low magnetic fields, the approach to deduce the energy relaxation times from current-voltage curves fails. The problem arises given the fact that the number of vortices, deduced from the applied magnetic field only, is in fact larger. Here, we provide a method to count the number of vortices in samples at zero magnetic field. Experiments were performed on MoSi samples with focused ion beam milled-out slits. Every time the number of vortices crossing the sample is increased by one, a current-voltage kink appears. The number of kinks corresponds to the number of vortices. This information allows one to correct the previously unphysical energy relaxation times at low magnetic fields.

14:30	143	Particle-hole symmetry in the 5/2 Quantized Hall State at small magnetic field
		Loic Herviou, Frédéric Mila, École Polytechnique Fédérale de Lausanne
		The nature of the experimentally-measured fractional conductance plateau at filling 5/2 in Quantum Hall states remains an open question. After a decade of debate, the theoretical consensus settled on the non-Abelian Antipfaffian while recent experimental results measured an incompatible quantized thermal conductance of 5/2. We revisit previous theoretical approaches with a more careful treatment of the Landau level mixing, the parameter controlling the interaction between different Landau levels. I will present the challenges behind this approach, and our main results: an inversion of the gaps at mixings well below the experimental regime and the important role of frozen spin degrees of freedom.
14:45	144	Coupled chain construction for a fractional spin quantum Hall effect
		Pierre Fromholz ¹, Even Thingstad ¹, Flavio Ronetti ², Daniel Loss ¹, Jelena Klinovaja ¹ ¹ University of Basel, ² ix Marseille Univ, Universite de Toulon, CNRS, CPT
		While the topological classification of non-interacting spin excitation band structures has success- fully been applied to understand many magnetic insulators, intrinsic magnon-magnon interactions can modify the topological properties significantly. Using a coupled wire approach, we show that the system of weakly coupled spin chains with modulated Dzyaloshinskii-Moriya coupling strengths can be engineered to host Abelian and non-Abelian fractional spin quantum Hall effects controlled by tuning the chain magnetizations. The associated spin fractionalization can be detected through the spin conductance. We argue that these phases can be realized in systems of synthetic spin chains and ultracold atoms.
15:00	145	Characterizing fractional quantum Hall states using isometric tensor networks
		Bartholomew Andrews, Zhehao Dai, Yantao Wu, Michael Zaletel, UC Berkeley
		The simulation of strongly-correlated quantum many-body systems is a long-standing numerical challenge. Although the ground-state properties of one-dimensional systems may be efficiently distilled using the density matrix renormalization group, now understood in the framework of matrix product states, generalizing this procedure to higher dimensions is problematic, since the exact evaluation of tensor network states becomes exponentially expensive. In this talk, we remedy this by employing isometric tensor networks (isoTNS), a recently-proposed restriction of the projected entangled pair state ansatz. We evaluate isoTNS algorithms for bosons and fermions, and present current progress in applying them to characterize fractional quantum Hall states.
15:15	147	Topological interlayer superconductivity mediated by magnons
		Even Thingstad, Joel Hutchinson, Jelena Klinovaja, Daniel Loss, University of Basel
		Most proposals to realize topological superconductivity rely on exploiting the properties of a top- ologically trivial superconductor through the proximity effect. An alternate route is to search for systems where the pairing interaction directly gives rise to topologically non-trivial superconduc- tivity. We show that magnon-mediated superconductivity in heterostructures of transition metal dichalcogenides coupled to magnetic insulators provides a promising route to this end. Consid- ering a trilayer heterostructure consisting of an antiferromagnetic insulator sandwiched between two transition metal dichalcogenides, we show that magnons can mediate topologically non-trivial interlayer superconductivity.

15:30	148	Tunable unconventional kagome superconductivity in charge ordered RbV_3Sb_5 and KV_3Sb_5
		 Zurab Guguchia ¹, Charles Mielke III ², Debarchan Das ¹, Ritu Gupta ¹, JX. Yin ³, H. Liu ⁴, Q. Yin ⁵, M. H. Christensen ⁶, Z. Tu ⁵, C. Gong ⁵, N. Shumyia ⁷, Md. S. Hossain ⁷, Ts. Gamsakhurdashvili ¹, M. Elender ¹, P. Dai ⁹, Alex Amato ¹, Youguo Shi ⁴, Hechang Lei ⁵, R. M. Fernandes ⁹, M. Z. Hasan ⁷, Hubertus Luetkens ¹, Rustem Khasanov ¹ ¹ Laboratory for Multiscale materials eXperiments, Paul Scherrer Institute ² Department of physics, Southern University of Science and Technology, Shenzhen, China ⁴ University of Chinese Academy of Sciences, Beijing 100049, China ⁵ Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China ⁶ Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark ⁷ Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA) ⁸ Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX, USA ⁹ School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA We utilized pressure-tuned and ultra-low-temperature muon-spin spectroscopy to uncover the un- conventional nature of superconductivity in kagome metals (Rb,K)V₃Sb₅, At ambient pressure, the suppressed, the superfluid density increases, and the superconducting pairing state that is not only fully gapped, but also spontaneously breaks time-reversal symmetry. Our results offer unique insights into the nature of the pairing state.
15:45	146	Magnetic Impurity Effect in the Kagome Superconductor LaRu ₃ Si ₂
10-00	140	Zurab Guguchia ¹ , Charles Mielke III ¹ , Jonathan Spring ² , Dariusz Jakub Gawryluk ¹ , H. Nakamura ³ , Soohyeon Shin ¹ , Huanlong Liu ² , Vahid Sazgari ¹ , Jike Lyu ¹ , Toni Shiroka ⁴ , Marisa Medarde ¹ , Alex Amato ¹ , Satoru Nakatsuji ³ , Rustem Khasanov ¹ , Hubertus Luetkens ¹ , Debarchan Das ¹ ¹ Paul Scherrer Institut, ² University of Zürich, ³ ISSP Tokyo, ⁴ ETH Zürich The rich interplay of unconventional superconductivity and symmetry-breaking states lies at the frontier of physics and materials science. Here we report muon spin rotation (μSR) experiments of the magnetic impurity effect on the superconducting and normal state properties in the prototyp- ical kagome superconductor LaRu ₃ Si ₂ . In the normal state, zero-field μSR experiments reveal a hidden magnetism in the undoped system which is enhanced by Fe-doping. From measurements of magnetic penetration depth λ, doping induces a change of gap structure from nodeless s-wave to nodal gap symmetry. The T _c /λ ₋₂ ratio is comparable to that of unconventional superconductors. Taken together, these results suggest unconventional superconducting and normal states in this kagome system.
16:00	149	Two-dimensional Shiba lattices as a platform for crystalline topological superconductivity
		Titus Mangham-Neupert, Martina Soldini, Glenn Wagner, University of Zürich
		Localized or propagating Majorana boundary modes are the key feature of topological supercon- ductors. Lattices of Yu-Shiba-Rusinov bound states – Shiba lattices – that arise when magnetic adatoms are placed on the surface of a conventional superconductor can be used to create topo- logical bands within the superconducting gap of the substrate. I will discuss results using scanning tunnelling microscopy to create and probe adatom lattices with single atom precision.Our results highlight the potential of Shiba lattices as a platform to design the topology and sample geometry of 2D superconductors.

16:15	150	Mechanisms for π phase shifts in Little-Parks experiments on single crystals
		Mark Fischer, Universität Zürich, Patrick A. Lee, MIT, Jonathan Ruhman, Bar Ilan University
		The Little-Parks effect, the periodic change in the critical temperature upon threading magnetic flux through a superconducting cylinder, exhibits a maximum or a minimum at zero flux in the presence of time-reversal symmetry. The latter situation, referred to as π rings, is only expected for poly-crystalline rings of an unconventional superconductor. Interestingly, recent measurements of the Little-Parks effect in single-crystal rings of 4Hb-TaS ₂ show zero and π rings and have been interpreted as evidence of exotic superconductivity. We discuss two scenarios for this unconventional behavior, namely a two-component order parameter and negative interlayer Josephson coupling in a s-wave superconductor, as well as both scenarios' reliance on crystal defects.
16:30		Coffee Break
		KOND VI: Метнодs Chair: NN
17:00	151	Entanglement and thermo-kinetic uncertainty relations in coherent mesoscopic transport
		Kacper Prech ¹ , Philip Johansson, Gabriel Landi ² , Elias Nyholm, Patrick Potts ¹ , Peter Samuelsson ³ , Claudio Verdozzi ³ ¹ University of Basel, ² University of Rochester, ³ Lund University Some aspects concerning coherence in open quantum systems remain poorly understood. On the one hand, coherence leads to entanglement and nonlocality. On the other, it leads to a suppression of fluctuations, causing violations of classical thermo-kinetic uncertainty relations. These represent
		its different manifestations, one depending only on the state of the system and one depending on two-time correlation functions. We employ these manifestations to determine when mesoscopic quantum transport through a double quantum dot can be captured by a classical jump model, and when such model breaks down implying nonclassical behavior. Quantum tunneling induces Rabi oscillations and results in both manifestations of coherence, indicating the breakdown of a classical description.
17:15	152	Weak-signal extraction enabled by deep-neural-network denoising of diffraction data
		Jens Oppliger ¹ , Michael Denner ¹ , Julia Küspert ¹ , Ruggero Frison ¹ , Qisi Wang ¹ , Alexander Morawietz ¹ , Oleh Ivashko ² , Ann-Christin Dippel ² , Martin von Zimmermann ² , Izabela Biało ¹ , Leonardo Martinelli ¹ , Benoît Fauqué ³ , Jaewon Choi ⁴ , Mirian Garcia-Fernandez ⁴ , Kejin Zhou ⁴ , Niels B. Christensen ⁵ , Tohru Kurosawa ⁶ , Naoki Momono ⁶ , Migaku Oda ⁶ , Fabian Donat Natterer ¹ , Mark Hannes Fischer ¹ , Titus Neupert ¹ , Johan Chang ¹ ¹ Physik-Institut, Universität Zürich ² Deutsches Elektronen-Synchrotron DESY, Hamburg ³ JEIP, USR 3573 CNRS, College de France, PSL University ⁴ Diamond Light Source, Oxfordshire ⁵ Department of Physics, Technical University of Denmark ⁶ Department of Physics, Hokkaido University
		We show how data can be denoised via a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. This way, the neural network learns about the statistical properties of the noise. We demonstrate that using artificial noise does not yield such quantitatively accurate results.

17:30	153	A Versatile Ultrasonic Setup for Quantum Matter Research
		Xuan Dang Dang, Marek Bartkowiak, Marc Janoschek, Paul Scherrer Institut
		Ultrasound techniques offer a simple and efficient method for studying quantum matter as they are able to detect subtle changes to symmetry and are also sensitive to lattice-spin/charge coupling. There are two distinct measurement paradigms used for ultrasonic studies: Whereas RUS provides a comprehensive view of the elastic tensor of solids, PEUS measures changes in sound wave attenuation and velocity, revealing the coupling of the lattice to spin or charge degrees of freedom. Here we will present versatile ultrasonic setup, which is using the same electronic system and allowing for efficient switching between both methods. The setup is further optimized for studying quantum systems in low-temperature and magnetic field environments.
17:45	154	Infrared ellipsometry study of the charge dynamics in ${\rm K}_{_{\rm 3}}{\rm p}$ -terphenyl
		Qi He ¹ , Dionys Baeriswyl ¹ , Christian Bernhard ¹ , Florian le Mardelé ² , Sharma Meenakshi ² , Premysl Marsik ¹ , Bing Xu ¹ , Andrea Perali ² , Claudio Pettinari ² , Nicola Pinto ² ¹ University of Fribourg, ² Università di Camerine
		We report an infrared ellipsometry study of the charge carrier dynamics in polycrystalline K _x p- terphenyl samples with nominal x = 3, for which signatures of high-temperature superconductivity were previously reported. A dc resistivity of about 0.3 Ω cm at 300 K is deduced from the IR data, comparable to values measured by electrical resistivity on a twin sample. Our data might still be compatible with a filamentary superconducting state with a volume fraction well below the percola- tion limit for which the spatial confinement of the condensate can result in a plasmonic resonance at finite frequency.
18:00	155	Electronic properties of single layer molybdenum disulphide-on-gold
		heterostructure as a function of twist angle
		Ishita Pushkarna, Arpád Pásztor, Christoph Renner Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva
		Transition metal dichalcogenides like molybdenum disulphide (MOS_2) have been studied on metal surfaces, but little is known about twist angle-dependent electronic properties of these simple heterostructures, which indeed offers tremendous opportunities to design functional quantum materials. In this talk, we present a detailed scanning tunnelling microscopy and spectroscopy investigation of electronic properties of monolayer MOS_2 on gold as a function of twist angle. We find that the semi-conducting band edges and hence the band gap are modulated at the morié wavelength (moiré between MOS_2 and gold) and this modulation progressively vanishes with increasing twist angle.
18:15	156	Field-induced bound-state condensation and spin-nematic phase in SrCu ₂ (BO ₃), revealed by neutron scattering up to 25.9 T
		 Mithilesh Nayak ¹, Ellen Fogh ¹, Maciej Bartkowiak ², Hiroshi Kageyama ³, Kazuhisa Kakurai, Frédéric Mila ¹, Koji Munakata ⁴, Hiroyuki Nojiri ⁵, Bruce Normand ⁶, Ekaterina Pomjakushina ⁶, Oleksandr Prokhnenko ², Henrik Rønnow ¹, Jian-Rui Soh ¹, Alexandra Angeline Turrini ⁶, Mohamed E. Zayed ⁷ ¹ EPFL, ² Helmholtz-Zentrum Berlin für Materialien und Energie, ³ University of Tokyo ⁴ Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) ⁵ Tohoku University, ⁶ Paul Scherrer Institute, ⁷ Carnegie Mellon University in Qatar High-field Inelastic Neutron Scattering experiments have been conducted on SrCu₂(BO₃)₂ up to 25.9 T and we find a rich set of excitations whose energies and spectral intensities have been measured as a function of magnetic field. Using cylinder matrix-product-states calculations on the Shastry-Sutherland model with Dzyaloshinskii–Moriya interactions, we reproduce experimental spectra. Multiple unconventional spectral features such as the gradients of the one-triplet branches
		and the persistence of the single-triplet gap point to a condensation of spin-2 bound states, thus realizing a spin-nematic phase. The single-triplet gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in $SrCu_2(BO_3)_2$ is best understood as a condensate of Cooper pairs of hardcore bosons.

18:30	157	3D ptychography reconstruction
		Ding Peng, Tatiana Latychevskaia, Sara Mustafi, Paul Scherrer Institut
		Electron ptychography has demonstrated the world-record highest resolution in imaging two- di- mensional materials such as transition metal dichalcogenides (TMD). We are investigating the pos- sibility of applying electron ptychography-related techniques for three-dimensional reconstruction of atomic positions and the associated resolution limits.
18:45		
19:00		Transfer to Dinner
19:30		Conference Dinner

Friday, 08.09.2023, Room Aula 033

Time	ID	KOND VII: DIFFRACTION AND SPECTROSCOPY Chair: Ilaria Zardo, Universität Basel
12:00	161	Raman spectroscopy as an ideal tool for probing phonon-carrier interactions in low dimensional materials
		Mirjana Dimitrievska, Angel Labordet Alvarez, Gabriela Borin Barin, Roman Fasel, Michel Calame, EMPA
		Low dimensional materials (1D and 2D) are promising candidates as building blocks of future elec- tronics and optoelectronics. Controllable bandgap, strong light-matter interaction, sub-nanometer thickness, and high carrier mobility are among their favorable properties for electronic and optical applications. Comprehensive characterization of these materials is a crucial learning step toward their reliable incorporation in devices. In this work, we will discuss how temperature-dependent, multiwavelength excitation Raman spectroscopy could be effectively used to probe the interaction between the 1D graphene nanoribbons and various substrates (metal, oxides, semiconductors), in- cluding the effects on the phonon-carrier interaction, which are crucial for the device performance.
12:15	162	Three-dimensional microstructural investigation of Silicon Carbide composite materials using synchrotron radiation
		Fareeha Hameed ¹ , Lucia Mancini ² , Andrea Moriani ³ , Halit Tatlisu ⁴ , Silvano Tosti ³ ¹ Forman Christian College University ² Slovenian National Building and Civil Engineering Institute ZAG ³ ENEA, Italian National Agency for New Technologies ⁴ ATI, Vienna University of Technology
		Fiber-reinforced silicon carbide composite materials are promising candidates for applications in the aerospace industries as well as future energy sources (fusion and fission). They have structural as well as functional applications. These composites were previously analyzed by methods of neutron scattering and neutron tomography. Recently synchrotron X-ray phase contrast micro-tomography has been performed to get three-dimensional information on the porosity and morpho-textural properties. Porosity plays a major role in their safety and reliability. The length scale of the porosity ranges from macro to micropores. Hence advanced techniques have to be employed to get a complete qualitative and quantitative analysis.

12:30	163	Shape Transformation of Nanocrystals investigated by Model Free X-Ray Scattering Analyses
		Rainer Lechner ¹ , Max Ritter ² , Agnes Weimer ³ , Artur Feld ³ ¹ Montanuniversität Leoben, ² Wood Materials Science, ETH Zürich ³ Institute of Physical Chemistry, Hamburg University
		Chemical synthesis of colloidal nanocrystals (NCs) can produce particles with controlled sizes and complex shapes, which influence their physical properties. For controlling the NCs' morphology, the 3D shape analysis of NCs is a key issue. Small angle X-ray scattering (SAXS) is a leading technique for analyzing NCs in sub-nanometer resolution. From SAXS data the 3D mean shape can be retrieved using model-free techniques. In this study the varying morphology during growth of iron oxide nanocrystals is analyzed. The FeO NCs transform from nanostars to nearly perfect nanocubes. X-ray diffraction experiments link the derived NC-shape to crystallographic directions. The congruence of the results is demonstrated by comparison to TEM analysis.
12:45	164	Phonon engineering in GaAs-GaP Superlattice Nanowires
		Aswathi Kanjampurath Sivan ¹ , Begoña Abad ¹ , Tommaso Albrigi ² , Omer Arif ³ , Johannes Trautvetter ¹ , Alicia Ruiz Caridad ¹ , Chaitanya Arya ¹ , Valentina Zannier ³ , Lucia Sorba ³ , Riccardo Rurali ² , Ilaria Zardo ¹ ¹ University of Basel ² Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra ³ NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
		Designing materials with tailormade thermal properties is crucial in developing energy-efficient devices. Superlattices (SLs), which are artificially layered superstructures with periodic repetition of two or more materials, offer a promising approach for controlling thermal properties through the modification of the phonon spectrum. To control heat flow, we must manipulate the phonons at the nanoscale. Nanowires (NWs) offer the possibility to combine a wide range of materials at the nanoscale in the form of SLs. In this work, we demonstrate the continuous tuning of the phononic properties of GaAs/GaP SL NWs as a function of SL periodicity through inelastic light scattering experiments corroborated by ab initio calculations.
	165	cancelled
13:00	166	Squaraine molecular crystals: Femtosecond dynamics and Davydov splitting
		Robert Schwarzl ¹ , Davide Giavazzi ² , Pascal Heim ¹ , Maximilian Jeindl ¹ , Markus Koch ¹ , Peter Puschnig ³ , Manuela Schiek ⁴ , Frank C. Spano ⁵ , Andreas Windischbacher ³ ¹ TU Graz, ² University of Parma, ³ University of Graz, ⁴ Center for Surface and Nanoanalytics (ZONA), Institute for Physical Chemistry (IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University Linz ⁵ Temple University, Philadelphia
		Squaraines are a class of organic chromophores which are particularly well-suited as molecular aggregates. Their structure-functionality relationship allows one to manipulate optical properties through the adjustment of side chains. SQIB is investigated via femtosecond transient absorption microscopy in an amorphous PMMA matrix and in its orthorhombic molecular crystal form with four molecules per unit cell in a non-parallel molecular arrangement. This results in multiple Davydov splitting of the excited states. We combine our measurements with simulations based on the essential states model and TD-DFT in order to explain all contributions to the absorption spectrum. The influence of molecular aggregation on dynamics is studied via femtosecond transient absorption microscopy.

13:15	167	Non-adiabatic Lifshitz transition in High T_c superconductor Bi2212
		Siham Benhabib, Laboratoire de physique des solides, université Paris Saclay, France
		The equilibrium tunning of doping generates substantial changes in the electronic states of cuprates. They undergo a gradual transition from Mott insulator to Fermi liquid, crossing d-wave superconductivity. Usually, these changes are accompanied by an abrupt transformation in Fermi surface topology, the so-called Lifshitz transition. Here in this work, we address the effect of ultrashort pulses on the Fermi surface topology of cuprates $Bi_2Sr_2CaCu_2O_{a,b}$ by means time-resolved-Angle resolved Photoemission Spectroscopy with pump energy of 1.55 eV. For the first time, we demonstrate that high fluence pulses are significantly efficient in supplying the Fermi level with additional carriers through the photodoping process, driving non-adiabatically the Fermi surface from hole-like to electron-like.
13:30	168	Phase transition driven by ultrashort laser pulses in the charge-density-wave material K _{0.3} MoO ₃
		Rafael Winkler ¹ , Larissa Boie ¹ , Yunpei Deng ² , Matteo Savoini ¹ , Serhane Zerdane ² , Abhishek Nag ² , Sabina Gurung, Davide Soranzio ¹ , Tim Suter ¹ , Vladimir Ovuka ¹ , Janine Dössegger ¹ , Elsa Souto Gonçalves de Abreu ¹ , Simone Biasco, Roman Mankowsky ² , Edwin J. Divall ² , Alexander R. Oggenfuss ² , Mathias Sander ² , Christopher Arrell ² , Danylo Babich ² , Henrik T. Lemke ² , Paul Beaud ² , Urs Staub ² , Jure Demsar ³ , Steven Johnson ¹ ¹ ETH Zürich, ² SwissFEL, Paul Scherrer Institute, Villigen ³ Faculty Institute of Physics, Johannes Gutenberg-University Mainz
		Blue Bronze ($K_{0.3}MoO_3$) is a quasi 1D material exhibiting a charge density wave with a periodic lattice distortion (PLD). In a time resolved x-ray experiment at SwissFEL, we study the dynamics of the PLD by pumping $K_{0.3}MoO_3$ with short laser pulses and probing it using x-ray diffraction. We construct reciprocal space maps (RSM) of superlattice reflections at different delays. The RSM along the surface normal gets broader at the delay equal to half the amplitude mode oscillation period, indicating a transient inversion of the PLD. For longer delays, this broadening is not visible. However, the diffracted x-ray intensity drops below the unpumped value indicating a molten CDW near the surface.
13:45	169	Band structure measurements on the topological magnet PrGeAl
		Ola Kenji Forslund ¹ , Johan Chang ¹ , Masafumi Horio ¹ , Kevin Kramer ¹ , Xiaoxiong Liu ¹ , Titus Neupert ¹ , Ekaterina Pomjakushina ² , Pascal Puphal ² , Yasmine Sassa ³ , Qisi Wang ¹ , Jonathan White ⁴ ¹ Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich ² Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI ³ Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg ⁴ Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI
		None zero Berry curvature in condensed matter is the fundamental concept behind the unique responses topological materials exhibit. We report intrinsic spin fluctuations to be enough to realise anomalous hall effect (AHE) in PrGeAI. PrGeAI is a topological ferromagnet and is stabilised in a none centosymmetric structure. Based on muon spin relaxation, transport, angle resolved photo emission spectroscopy (ARPES) measurements and density functional theory calculations, we show AHE in the paramagnetic phase. Our study show that long-range magnetic order and spontaneous time-reversal symmetry breaking are not essential requirements for AHE and can emerge in a wider range of condensed matter systems than previously thought.

14:00	170	Interplay between phonon and charge density wave in Superconducting La _{1.675} Eu _{0.2} Sr _{0.125} CuO ₄
		Xunyang Hong ¹ , Johan Chang ¹ , Jaewon Choi ² , Mirian Garcia-Fernandez ² , S. Pyon ³ , Yasmine Sassa ⁴ , H. Takagi ³ , T. Takayama ³ , Oisi Wang ⁵ , Kejin Zhou ² , Karin von Arx ¹ ¹ Physik-Institut, Universität Zürich, ² Diamond Light Source, Oxfordshire ³ Department of Advanced Materials, University of Tokyo ⁴ Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg ⁵ Chinese University of Hong Kong
		We conducted a resonant inelastic X-ray scattering (RIXS) experiment at the O-K edge on La _{1,675} Eu _{0.2} Sr _{0.125} CuO ₄ , leveraging RIXS's high resolution to study charge density wave (CDW) and its interaction with phonons in cuprate superconductor. Three phonon modes are detected in the RIXS spectra, which are assigned to the bond-stretching, bond-buckling, and an acoustic phonon mode respectively. The low-lying acoustic mode displays a sharp peak of spectral weight at q ~ 0.25, slightly larger than the CDW wavevector $Q_{\rm CDW} \sim 0.23$. Meanwhile, no significant softening of this phonon mode is observed, suggesting a weak interaction between charge and phonon excitation. These results are well explained by our theoretical model within the weak-coupling framework.
14:15		END

ID	KOND POSTER
181	RIXS study of Cu-O-Mn superexchange coupling at $YBa_2Cu_3O_7/manganite$ interfaces
	Subhrangsu Sarkar ¹ , Roxana Gaina Capu ^{1,2} , Yurii Pashkevich ¹ , Davide Betto ³ , Kurt Kummer ³ , Roberto Sant ³ , Claude Monney ¹ , Christian Bernhard ¹ ¹ University of Fribourg, ² West University of Timisoara, RO ³ European Synchrotron Radiation Facility, B.P. 220, FR-38043 Grenoble
	Here we study the anomalous interface magnetic excitations in the YBa ₂ Cu ₃ O ₋ / manganite heterostructures. Detailed analysis of the inelastic part of the high-resolution Resonant Inelastic X-ray Scattering (RIXS) signal in conjunction with polarimetry show the presence of two magnon modes in the cuprate, including a unique, non-dispersive interface magnon, that appears only due to the interfacial proximity of the manganite layer. We demonstrate that this low energy magnon originates from the interface copper layer in which intralayer exchange decreases due to Cu orbital reconstruction in favor of 3dz2-r2, instead of usual 3dx2-y2. Our work contributes to future studies of oxide interfaces offering perspectives for the design of artificial magnetic meta-materials.
182	Magnetostriction and heat capacity measurements of quantum spin ice materials at ultra-low temperatures
	Ilaria Villa, Marek Bartkowiak, Romain Sibille Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI
	In the search for Quantum Spin Liquid (QSL) phases, Rare-Earth pyrochlores are of interest to stabilize Spin lce states. In QSL candidates, magnetic neutron scattering is a well-established probe for studying magnetic order and interactions. However, in rare-earth elements, degrees of freedom can include magnetic and electric multipoles, which are elusive in scattering experiments. Then, bulk techniques like specific heat and magnetostriction, especially at ultra-low temperatures (ULTs), are crucial to detect phase transitions "hidden" in scattering experiments. We present magnetostriction measurements on Quantum Spin Ice candidates and the development of a heat capacity probe at ULTs.

183	Thermoelectric properties of individual silicon nanotubes
	Jose Manuel Sojo Gordillo ¹, Saeko Tachikawa ¹, Yashpreet Kaur ¹, Giulio de Vito ¹, Alex Morata ², Ilaria Zardo ¹
	¹ University of Basel, ² Catalonian Institute for Energy Research
	Large amounts of waste heat generated in our economy could be converted into useful electric power using thermoelectric generators. However, the low efficiency, scarcity, high cost, and poor production scalability of conventional thermoelectric material hinder their mass deployment. Nanoengineering has proven an excellent approach for enhancing the thermoelectric properties of abundant and cheap materials such as silicon. Recently, a family of nano-enabled materials in the form of large-area paper-like fabrics made of nanotubes has been developed as a cost-effective and scalable solution for thermoelectric generation. In this project, the thermoelectrical properties of the described nanotubes will be measured using different techniques (such as self-heating, nano calorimeters, and Raman thermography).
184	Neutron scattering on a new organo-metallic quantum magnet
	Oksana Shliakhtun, Marc Janoschek, Jonas Philippe, Gediminas Simutis, Paul Scherrer Institut
	Quantum spin ladders are fascinating systems with complex excitation spectra that depend on the relative strengths of the leg and rung exchange interactions. Here we report the magnetic properties of a new strong-leg spin ladder obtained by using magnetization, specific heat and neutron scattering measurements. In particular, we performed comprehensive inelastic neutron scattering experiments using both triple-axis and neutron time-of-flight techniques. Our results reveal a gapped excitation spectrum, consistent with the spin-ladder model. In addition, we will also show our magneto-thermodynamic experiments to demonstrate how the system transforms from a quantum paramagnet into a partially spin-polarized state.
185	$\mathbf{H}_{_{\mathrm{c2}}}$ as a function of the order parameter in unconventional superconductors
	Bernhard Lüscher, Mark Fischer, Universität Zürich
	The exact symmetries and form of the cooper pair wave function in many unconventional superconductors remains subject of ongoing debate. A possible way to shed some more light upon the matter is by explicitly computing thermodynamic properties given a functional form of the order parameter as well as a microscopic description of the normal state of a material. One such quantity is the upper critical field H_{c2} . We develop a numerical pipeline interfacing between a normal-state description including a microscopic interaction and thermodynamic quantities such as the upper critical field. This allows us to draw conclusions on the microscopic structure of an unconventional superconductor considering its experimental H_{c2} signature.
186	Emergent U(1) symmetry in non-particle-conserving 1D models
	Zakaria Jouini, Natalia Chepiga, Loic Herviou, Frédéric Mila, EPFL
	The properties of stable Luttinger liquid phases in models with a non-conserved number of particles are investigated. We study Luttinger liquid phases in one-dimensional models of hard-core boson and spinless fermion chains where particles can be created and annihilated three by three on adjacent sites. We provide an intuitive and systematic method based on the flow equation approach, which accounts for additional terms in the correlations generated by the Z_3 -symmetric interactions. We find that despite the emergence of U(1) symmetry under renormalization, the observables are still affected by its breaking in the bare Hamiltonian. In particular, the standard bosonization mapping becomes insufficient to capture the full behavior of correlation functions.
187	Critical line of the triangular Ising antiferromagnet in a field from a C3-symmetric corner transfer matrix algorithm

Samuel Louis Nyckees, Jeanne Colbois, Afonso Dos Santos Rufino, Frédéric Mila, EPFL

We propose a variant of the corner transfer matrix renormalisation group algorithm that contracts infinite tensor networks on the honeycomb lattice. We then apply the algorithm to the conceptually simple yet numerically challenging problem of the triangular lattice Ising antiferromagnet in a field at low temperatures and magnetic fields. We study how the finite temperature three-state Potts critical line in this model approaches the ground-state Kosterlitz-Thouless transition driven by a reduced field (h/T).

188	Convergent beam electron diffraction of adsorbates on graphene
	Sara Mustafi, Tatiana Latychevskaia, Ding Peng, Paul Scherrer Institut
	Convergent beam electron diffraction (CBED) on 2D materials provides a method for high-resolution imaging of individual particles deposited on a 2D material. A single-shot CBED pattern combines a diffraction pattern and a defocused image of the sample. We are investigating the optimal experimental imaging conditions for CBED of nanoparticles deposited on graphene. CBED allows regulating the radiation dose deposited into the sample by moving the sample within the probing convergent beam. This allows us to establish the resolution limits of the technique as a function of the required radiation dose.
189	Finite temperature investigation of the ferroJ1-J2 model
	Olivier Gauthé, Frédéric Mila, EPFL
	We study the spin-1/2 Heisenberg model on the square lattice with ferromagnetic nearest-neighbor coupling $J1 < 0$ and frustrated antiferromagnetic next-nearest coupling coupling $J2 > 0$. For spin- 1/2, the zero-temperature phase diagram differs from the $J1 < 0$ case, with a first order transition to the ferromagnetic state. By combining tensor network methods and spin wave theory, we draw the finite temperature phase diagram of the model. We locate the critical point ending the first order line in addition to the Ising transition at large J2. Our results support the absence of a spin nematic phase in the intermediate region at zero field.

Surfaces, Interfaces and Thin Films

Wednesday, 06.09.2023, Room 114

Time	ID	SURFACES, INTERFACES AND THIN FILMS I:
		Surface Science Chair: Jiri Pavelec, TU Wien
17.00	001	
17:00	201	Creation of the elusive carbon allotrope cyclo[18]carbon; a cyclic carbon molecule
		Katharina Kaiser, IBM Research Zurich, Säumerstrasse 4, CH-8803 Rüschlikon
		Cyclo[n]carbons were predicted for decades to exist. Although a synthetic route was elaborated in the 1980's, and glimpses of cyclocarbons were detected in gas phase, they could never be stabilized long enough for characterization.
		AFM and STM at low temperatures allow triggering certain on-surface chemical reactions by atom manipulation and can facilitate the controlled formation of highly reactive molecules on inert surfaces. Using this approach, we formed cyclo[18]carbon on a thin layer of NaCl. By comparing high-resolution AFM images and AFM simulations of different predicted resonance structures, we identified possible ground state structures of cyclo[18]carbon adsorbed on bilayer NaCl.
17:30	202	Intrinsic defects on $PtSe_2$ vdW single crystals studied with ncAFM
		Igor Sokolovic ^{1,4} , Bing Wu ² , Zdenek Sofer ² , Aleksandar Matkovic ³ , Michael Schmid ⁴ , Ulrike Diebold ⁴ , Tibor Grasser ¹ ¹ Institute of Microelectronics, TU Wien
		 ² Dep. of Inorganic Chemistry, University of Chemistry and Technology, Prague, Czech Republic ³ Chair of Physics, Montanuniversität Leoben, Leoben, Austria ⁴ Institute of Applied Physics, TU Wien
		In this research, surfaces of van-der-Waals-bonded single-crystal PtSe ₂ cleaved in ultrahigh vac- uum (UHV) were studied with non-contact atomic force microscopy (ncAFM) to simultaneously reveal their atomic and electronic structure. Typical ionic and electronic defects present on the cleaved surfaces were characterized with single-atom precision to reveal the proclivity of the lay- ered Dirac semi-metal PtSe ₂ toward different defect types compared to the synthesized single trilayer thin films of semiconducting PtSe ₂ and other Pt-based TMDs. Cleaving reveals the intrinsic distribution of defects within the bulk, while such surfaces can also be considered representative of the commonly exfoliated and stacked PtSe ₂ thin sheets used in complex heterostructures.
17:45	203	Selective adsorption of DHTAP on the nanostructured Cu-CuO stripe phase
		Claudia López-Posadas ¹, Antony Thomas ², Thomas Leoni ², Olivier Siri ², Conrad Becker ², Peter Zeppenfeld ¹ ¹ Institute of Experimental Physics, Johannes Kepler University Linz
		² Aix-Marseille University, CNRS, CINaM
		We have studied 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) layers on the regularly pat- terned Cu(110)-(2x1)O stripe phase. Using Reflectance Difference Spectroscopy (RDS) and Scan- ning Tunneling Microscopy (STM) we find that the DHTAP molecules preferentially adsorb on the Cu(110) stripes, with their long molecular axis aligned parallel to the [-110]-direction. In contrast, on the subsequently covered Cu(110)-(2x1)O stripes, the DHTAP molecules are aligned parallel to the [001]-direction. The evolution of the RDS signal allows to monitor the sequential adsorption and orientation of DHTAP for different oxygen pre-coverages and, hence, different Cu and CuO stripe widths. Interestingly, beyond the first monolayer, the DHTAP molecules adopt a preferential orientation which critically depends on the initial oxygen coverage.

18:00	204	Heterogeneous Photocatalysis:
		Alcohols on Bare and Metal-decorated Titania(110) and Hematite(012)
		Moritz Eder ¹ , Ulrike Diebold ¹ , Ueli Heiz ² , Gareth Parkinson ¹ , Jiri Pavelec ¹ , Philip Petzoldt ² , Michael Schmid ¹ , Martin Tschurl ²
		¹ Institute of Applied Physics, TU Wien, ² TU Munich
		We investigated the surface (photo)chemistry of alcohols on TiO ₂ (110) and recently Fe ₂ O ₃ (012) single crystals in ultra-high vacuum. Our studies focused on the role of the metal co-catalyst in the photocatalytic reaction by comparing the reactivity of bare and metal-decorated surfaces. We show that photocatalytic reactions are not merely a couple of redox reactions, but an interplay of thermal and photon-driven steps. On TiO ₂ (110), the alcohol photoconversion allows for a steady-state production of molecular hydrogen and aldehydes/ketones. We rationalize the findings with a comprehensive mechanism taking into account stoichiometry and charge-carrier dynamics. The identification of surface mechanisms on Fe ₂ O ₃ is less advanced, but there seem to be parallels in the photochemistry.
18:15	205	Exploring the surface atomic and electronic structure of the multiferroic Rashba semiconductor Ge _{1-x} Mn _x Te
		Martin Heinrich ¹, Juraj Krempasky ¹, Matthias Muntwiler ¹, Gunther Springholz ² ¹ Paul Scherrer Institute
		² Institut für Halbleiter-und Festkörperphysik, Johannes Kepler Universität, Linz, Austria
		GeTe is a IV-VI semiconductor compound with existing applications in optoelectronics and ther- moelectrics. In addition to ferroelectricity and a large Rashba spin splitting in GeTe, doping with Mn atoms introduces ferromagnetism, which makes Ge _{1,x} Mn _x Te a magnetoelectric multiferroic with coupled electric and magnetic polarization and a promising candidate for spintronic applications. In this project, we use synchrotron based photoelectron diffraction (XPD, PhD) and spectroscopy (XPS, ARPES) and scanning tunneling microscopy (STM, STS) to gain a detailed understanding of its surface atomic and electronic structure and the inherent multiferroic couplings.
18:30	206	An STM investigation on the CO ₂ activation and conversion on Au/MgO(001) ultrathin film
		Francesco Presel ¹ , Hans-Joachim Freund ² , Martin Sterrer ¹ ¹ University of Graz, ² Fritz Haber Institut der Max Planck Gesellschaft
		In previous research, we have shown that single-layer Au nanoislands on ultrathin MgO/Ag(001) can catalyze activation of CO ₂ to oxalate $(CO_2)_2$. — a stable intermediate for chemicals and synthetic fuels — even below room temperature. Here we identified with STM the oxalate species present on the surface after reaction, which was only observed in presence of single-layer Au islands after exposure to CO ₂ at 200-300 K. Most surprisingly, this species was not located beside the Au islands: being the adsorbate species not mobile on the surface, this suggests that the reaction might involve a complex process, with electrons first tunnelling through the MgO into the gold, then diffusing over MgO.
18:45	207	Structure and nanoscale dynamics at carbon materials and interfaces: From organic aromatics to nucleobases
		Philipp Maier ¹ , Noah J. Hourigan ¹ , Neubi F. Xavier Jr. ² , Marco Sacchi ² , Peter Fouquet ³ , Anton Tamtögl ¹ ¹ Institute of Experimental Physics, Graz University of Technology ² Departement of Chemistry, University of Surrey ³ Institut Laue-Langevin
		The high scattering cross section of neutron and helium beams towards hydrogen provides exper- imental access to the structure and dynamics of hydrogen containing molecules at carbon materi- als, including e.g. the molecular motion of water. I will present experimental and theoretical results of hydrogen containing molecules ad-sorbed on carbon surfaces. These include the structure and dynamics of deuterated pyrazine on graphite, providing insight in how the van der Waals interac- tion between adsorbates and the substrate influences adsorbate structure and stability. Moreo- ver, I will present recent neutron-spin echo measurements of adenine and thymine ad-sorbed on graphite, to better understand hydrogen bond formation in DNA base pairs, tautomerisation rates, and proton tunnelling.

19:00	208	C_2H_4 Adsorption on Clean and Rh-Decorated $Fe_3O_4(001)$ Surface
		Chunlei Wang ¹ , Panukorn Sombut ¹ , Lena Puntscher ¹ , Manuel Ulreich ¹ , Jiri Pavelec ¹ , Matthias Meier ^{1,2} , Ulrike Diebold ¹ , Cesare Franchini ^{2,3} , Michael Schmid ¹ , Gareth Parkinson ¹ ¹ Institute of Applied Physics, TU Wien, Austria ² Computational Materials Physics, University of Vienna ³ Alma Mater Studiorum, Università di Bologna, Italy
		The adsorption of ethylene (C_2H_4) is a crucial step in many important industrial reactions. Recently, novel single-atom Rh, heterogeneous catalysts have shown excellent activity and selectivity for hydroformylation reactions (e.g., $C_2H_4 + CO + H_2 = CH_3CH_2CHO$). However, a fundamental understanding of the catalytic mechanisms remains elusive. As a first step towards this goal, Rh, adatoms were deposited on a well-defined single-crystal Fe ₃ O ₄ (001) surface, and various surface-sensitive techniques under ultra-high vacuum conditions in combination with density functional calculations were used to investigate the behavior of C_2H_4 adsorption. In addition, the adsorption on clean Fe ₃ O ₄ (001) surface is also investigated as control experiments.
19:15	209	Atomic-Level Studies of CO/Rh, and (CO) _z /Rh, Formation on an Fe ₃ O ₄ (001) support
		Panukorn Sombut ¹ , Ulrike Diebold ¹ , Cesare Franchini ² , Zdenek Jakub ¹ , Matthias Meier ¹ , Gareth S. Parkinson ¹ , Jiri Pavalec ¹ , Lena Puntscher ¹ , Michael Schmid ¹ , Chunlei Wang ¹ ¹ TU Wien, ² University of Vienna
		Understanding the interaction between reactant molecules and "single-atom" active sites is impor- tant for comprehending the evolution of single-atom catalysts in reactive atmospheres. Here, we study the interaction between CO and Rh ₁ and Rh ₂ species supported by Fe ₃ O ₄ (001) using DFT and experimental surface science techniques. Stable Rh ₁ (CO) ₁ is formed via CO adsorption at both 2-fold and 5-fold to oxygen-coordinated Rh ₁ sites. While DFT suggests Rh ₁ (CO) ₂ to be energetical- ly favorable, only a minority of these are observed experimentally. Instead, the limited Rh ₁ (CO) ₂ is observed experimentally via CO-induced Rh ₂ dimer breakup. Experiment and DFT results suggest this process occurs via an unstable Rh ₂ (CO) ₃ intermediate.
19:30		

Thursday, 07.09.2023, Room 114

Time	ID	Surfaces, Interfaces and Thin Films II: Thin Films and Heterostructures Chair: Chunlei Wang, TU Wien
14:00	211	Fabrication of two-dimensional magnets by implantating phyllosilicates with Fe ions
		Christian Teichert ¹ , Muhammad Zubair Khan ¹ , Ulrich Kentsch ² , Nico Klingner ² , Gregor Hlawacek ² , Aleksandar Matkovic ¹ ¹ Chair of Physics, Montanuniversität Leoben, ² Helmholtz-Zentrum Dresden-Rossendorf e.V. Recently, we demonstrated weak ferromagnetism in two-dimensional Fe:talc at room temperature and proposed iron-rich phyllosilicates as a promising platform for air-stable magnetic monolayers. Since these minerals are rather rare and hard to synthesize, we suggest ion implantation to tailor the phyllosilicates' magnetic properties. Nonmagnetic, iron-free single-crystalline talc bulk samples were implanted with 50 keV Fe ⁺ beams at different substrate temperatures. Ultrathin layers could be exfoliated indicating that the layered crystal structure is maintained after ion irradiation. The Mg-OH Raman peak showed a triplet formation implying a successful substitution of Mg by Fe in the talc layers.

14:30	212	Thin Film Structure of the Asymetric Ph-BTBT-10 Molecule for Application in Organic Thin Film Transistors
		Roland Resel, TU Graz, Yves Geerts, University Libre Brussels
		The class of benzothieno-benzothiophene (BTBT) type molecules are among the best performing organic semiconductors in thin film transistors. The asymmetry of the molecule induces specific thin film forming properties and unique crystallographic features. We see the nucleation of the thermodynamic stable phase at the substrate surface and a transition to a metastable phase at the subsequent film growth. Peak broadening effects could be referred to defects by integration of reversed molecules into the crystal structure. This work reveals that the reversal of the molecular orientation at the substrate surface is the dominant effect in the crystallisation kinetics within thin films.
	210	cancelled
14:45	214	Ultrathin La _{0.8} Sr _{0.2} MnO ₃ films with enhanced magnetic properties
		Gyanendra Panchal, Federico Stramaglia, Frithjof Nolting, Carlos A. F. Vaz, PSI
		We report the effect of inserting LaMnO ₃ and La _{0.45} Sr _{0.55} MnO ₃ buffer layers on the magnetic properties of epitaxial ultrathin La _{0.8} Sr _{0.2} MnO ₃ films on SrTiO ₃ (001) substrate. The LaMnO ₃ induces a bulk-like magnetic moments for La _{0.8} Sr _{0.2} MnO ₃ down to 1 uc thickness, the La _{0.45} Sr _{0.55} MnO ₃ induces antiferromagnetic order on the first 3 uc La _{0.8} Sr _{0.2} MnO ₃ and bulk-like moments at larger thicknesses. In both cases, the bulk-like moment is confirmed by a linear increase in the magnetization, with a slope m = 3.8 μ B/Mn. XMCD measurements confirm our magnetic results; XLD demonstrate the presence of an orbital reorganization at 3-4 uc. We attribute the full spin polarization of the La _{0.8} Sr _{0.2} MnO ₃ films to a charge carrier transfer into the adjacent buffer layer.
15:00	215	Revealing the electronic structures of SrTiO ₃ membranes and related heterostructures
		Hang Li ¹, Alla Chikina ¹, Nicholas Clark Plumb ¹, Nini Pryds ², Milan Radovic ¹, Ming Shi ¹, Shinhee Yun ² ¹ Paul Scherrer Institute, ² Technical University of Denmark
		Transition metal oxide (TMO) exhibit exotic physical properties, which generally originated from the strong interplay between the charges, spins, orbitals, and lattice degrees of freedom. Therefore, developing methods for manipulating this coupling yields opportunities for realizing many novel quantum phenomena. Recent studies establish routes to exfoliate free-standing TMO membranes, raising a promising method for realizing 2D TMO systems. In this presentation, I'll introduce our new ARPES studies on high-quality SrTiO ₃ membranes and SrNbO ₃ films grown on as-received STO membranes, showing high spectra quality. Our studies demonstrated that STO membranes are an advantageous platform for 2D electronic systems and can be utilized as a wafer for assembling complex oxide heterostructures.
15:15	216	Long Ranged Proximity Induced Interactions in YBa ₂ Cu ₃ O ₇₋₆ Sr ₂ IrO ₄ Thin Film Multilayers Revealed by X-ray Absorption Spectroscopy
		Jonas Knobel 1, Subhrangsu Sarkar 1, Mathias Soulier 1, Roxana Gaina Capu 21, Christian Bernhard 1, Fabrice Wilhelm 3, Andrei Rogalev 3, Peter Nagel 4, Stefan Schuppler 4 1 University of Fribourg, 2 West University of Timisoara, RO, 3 ESRF, 4 KIT
		Heterostructures consisting of the high-T _c superconductor YBa ₂ Cu ₃ O _{7.5} (YBCO) and the iridate Sr ₂ IrO ₄ (SIO) have been predicted to host induced superconducting spin-triplet or Majorana bound states and to find applications in devices such as superconducting diodes. Using X-ray Absorption Spectroscopy, we observe a large charge transfer in multilayers of these materials with holes being transferred from YBCO to SIO, leading to insulating behavior for thin YBCO layers. We also study the influence of the interface on the magnetism of both materials with X-ray circular dichroism. This work provides important insights on the interaction at the interface which is a crucial step towards real life applications and devices made from these heterostructures.

15:30	217	Characterization of Atomically Precise Graphene Nanoribbons by Raman Spectroscopy
		Jeong Ha Hwang, Amogh Kinikar, Mickael Lucien Perrin, Roman Fasel, Gabriela Borin Barin, Empa
		Raman spectroscopy has been widely used to characterize graphene nanoribbons (GNRs) as it is possible to probe GNR quality from growth in ultra-high vacuum (UHV) until device integration. However, implementing this technique to study GNRs intrinsic spectroscopic properties remains challenging, as their synthesis requires UHV environment and many of these GNRs are reactive and air-sensitive. Here, we propose a UHV chamber where in-situ growth and Raman characterization are possible. We studied short 7-AGNRs with unique zigzag/armchair aspect ratio that allowed us to investigate the zigzag edge reactivity upon their exposure to air. Further, we will also discuss the effect of controlled oxygen exposure on characteristic Raman transitions of the GNRs.
15:45	218	Intercalation of graphene nanoribbons with carbenes in ultra-high vacuum
		Dominik Lüthi ¹ , Lin Yang ² , Ji Ma ² , Akimitsu Narita ^{3,4} , Xinliang Feng ² , Pascal Ruffieux ¹ , Roman Fasel ¹ , Gabriela Borin Barin ¹ ¹ Empa, ² TU Dresden, ³ Max Plank Institute for Polymer Research, ⁴ Okinawa Institute of Science and Technology
		Atomically precise graphene nanoribbons (GNRs) have been synthesized by on surface-synthesis of specific precursors on metallic substrates in ultra-high vacuum (UHV). The enhanced chemical reactivity of zigzag edge states of reactive GNRs has hindered their transfer and device integra- tion. Here, we studied the intercalation of various GNRs with carboenes (BIM) as a promising route towards dry-transfer of GNRs in UHV. The intercalation occurs due to the formation of a dense self-assembled monolayer (SAM) on the surface, causing stochastic intercalation of GNRs. Intercalation also decreases the interaction with the underneath metal, allowing better access to GNRs electronic characterization and open a pathway to study the interaction of nanographenes with other surfaces.
16:00	219	Measuring Surface Parameters of Intercalated Graphene and their Correlation with the Substrate Coupling Strength
		Noah J. Hourigan ¹ , Giorgio Benedek ² , Philipp Maier ¹ , Joshua A. Robinson ³ , Anton Tamtögl ¹ , Maxwell Wetherington ³ ¹ Institute of Experimental Physics, Graz University of Technology ² Università di Milano-Bicocca, ³ The Pennsylvania State University
		Graphene can be grown via chemical vapour deposition on a silicon carbide substrate; thereafter, various elements can be intercalated between the graphene and the substrate. Here, we investigate bilayer graphene atop either intercalated 2D polar gallium, an intercalated hydrogen layer, or a simple carbon buffer layer. Using helium atom scattering (HAS) we probe surface characteristics such as the in-plane thermal expansion relationship, the electronic corrugation, and the electron-phonon coupling strength. We compare how these properties are affected by the intercalated material beneath. Despite HAS exclusively probing the graphene overlayer, we are able to detect subtle differences likely to be related to the substrate coupling strength.
16:15		
16:30		Coffee Break

Time	ID	Surfaces, Interfaces and Thin Films III:
		METHOD DEVELOPMENT Chair: Moritz Eder, TU Wien
17:00	221	Distance-Dependence of Orbital Density Mapping Using a CO-Functionalized STM Tip
		Fabian Paschke, Florian Albrecht, Leo Gross, Leonard-Alexander Lieske IBM Research Europe - Zurich
		In this work we use a CO tip to study the appearance of frontier molecular orbitals of pentacene as a function of the tip-sample distance. STM constant-height imaging reveals a transition from p- to s-wave dominated tunneling. We present a simple model that reproduces the distance-dependency due to the symmetry-dependent decay lengths of the CO tip states. The findings provide an additional control knob to identify molecular electronic and spin states, which often requires STM imaging of orbital densities and careful assignment to calculated molecular orbitals.
17:15	222	Microwave reflectance calibration in a scanning tunnelling microscope
		Bareld Wit ¹ , Georg Gramse ² , Stefan Müllegger ¹ ¹ Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Austria ² Biophysics Institute, Johannes Kepler University Linz, Austria
		Recent advances in near-field scanning microwave microscopy enable characterisation of nano- scale functional materials, surfaces, and nanoelectronic devices up to GHz frequencies and with sub-micron resolution. Material properties, including dielectric permittivity and dopant concentra- tion have been detected in a microwave-adapted atomic force microscope at ambient conditions. We show our STM-based microwave reflectance set-up and report a quantitative in-situ procedure for impedance calibration in ultra-high vacuum at 8 K. These results open the door to microwave impedance spectroscopic fingerprinting down to the scale of single molecules.
17:30	223	Correlation between 2- and 3-dimensional crystallographic lattices
		for epitaxial analysis
		Josef Simbrunner ¹ , Jari Domke ² , Oliver T. Hofmann ³ , Roland Resel ³ , Roman Forker ² , Torsten Fritz ² ¹ Medical University Graz, ² Institute of Solid State Physics, Friedrich Schiller University Jena ³ Institute of Solid State Physics, Graz University of Technology
		While the crystalline properties of an epitaxially grown thin film can be studied in three dimensions by X-ray methods like grazing incidence X-ray diffraction (GIXD), the first monolayer is only accessible by surface sensitive methods that allow the determination of a two-dimensional lattice like low-energy electron diffraction (LEED). GIXD measurements with sample rotation on epitaxially grown films are compared with distortion-corrected LEED experiments of molecular monolayers. In this work, a combined experimental approach of GIXD and LEED is introduced which can be used to investigate the effect of the epitaxial monolayer on the evolution of molecular crystals with epitaxial order grown on top.
17:45	224	Optimized Infrared Reflection Absorption Spectroscopy for Metal Oxides: Overcoming Challenges of Low Reflectivity and Sub-Monolayer Coverage
		Jiri Pavelec, David Rath, Michael Schmid, Ulrike Diebold, Gareth Parkinson Vienna University of Technology
		This study presents a new Infrared Reflection Absorption Spectroscopy (IRAS) setup for investigat- ing adsorption on "single-atom" catalysts, addressing the challenges of low reflectivity from oxide supports and sub-monolayer coverage of adsorbates. The setup features improvements such as a high numerical aperture, optimized optical path, controlled incidence angle range, and high me- chanical stability. Utilizing adjustable aperture plates, the minimum and maximum incidence angles can be varied to optimize the signal for each sample. This new setup successfully demonstrated enhanced signal-to-noise ratio in D_2O and CO absorbance measurements on a rutile $TiO_2(110)$ surface, agreeing with established literature, with significantly reduced measurement time.

18:00	225	The Surface Tension of Water in its Pure Vapor
		Alexander Syböck, Jan Balajka, Ulrike Diebold, Jiri Pavelec, Paul Ryan, Michael Schmid Institute for Applied Physics, TU Wien
		Contaminants and other gases are known to greatly affect surface tension values. We have devel- oped a way to measure the surface tension of ultra-clean liquids in contact with their pure gaseous phases. The liquid is condensed onto a small cryostat in a vacuum chamber. A pendant drop is formed and photographed allowing the surface tension of the ultra-pure liquid to be directly deter- mined. Accurate control of the temperature, pressure and optics of the system is of importance. How these parameters are precisely controlled in the instrument design will be discussed along with initial measurements of ultra-pure water.
18:15	226	Surface band-bending response to charge redistribution and adsorbates in the ZnO/electrolyte interface probed by in-situ Spectroscopic Ellipsometry
		Luis Rosillo, Christoph Cobet, Kurt Hingerl, Johannes Kepler Universität Linz
		In this work we look at the response of the surface band-bending of the ZnO single crystal polar faces (0001) and (000-1), in contact with an electrolyte, to a variation of charge at the solid-liquid interface by analyzing the effect of the inner electric fields on the excitonic dielectric function using in-situ spectroscopic ellipsometry.
		Discrete excitons on ZnO have a binding energy of (~ 60 meV) and in space charge region are sig- nificantly sensitive to modifications in the surface dipole moment. Hence, making them a siutable probe to study the response of the band-bending.
18:30	227	Quantitative Surface Structure of Water on Hematite: Experiment vs Theory
		Paul Ryan, Matthias Meier, Gareth Parkinson, Ali Rafsanjani-Abbasi, Panukorn Sombut, Chunlei Wang, TU Wien
		Normal incidence X-ray standing waves (NIXSW) was used to directly determine the adsorption height of adsorbed H ₂ O and OH on the α -Fe ₂ O ₃ (012)-(1x1) surface. The H ₂ O and terminal OH both sit at the same adsorption height (1.45 Å and 1.46 Å respectively). The bridging OH is found sitting essentially in plane with a projected bulk surface (0.01 Å) implying little surface relaxation. This data corroborates our previous AFM study [Jakub 2019] and can be used to benchmark DFT calculations. The most appropriate functionals are that produce little outward or inward surface relaxation and expensive Hybrid functionals are not necessarily suited for such systems. These findings are inline with our prior work [Meier 2018, Ryan 2020].
18:45	228	A Novel Four-Terminal Suspended Device for Nanoscale Thermal Characterization
		Giulio de Vito ¹ , Rahul Swami ¹ , Dominik Koch ¹ , Tathagata Paul ² , Wenhao Huang ² , Michel Calame ² , Bernd Gotsmann ³ , Ilaria Zardo ¹ ¹ University of Basel, ² EMPA, ³ IBM Zurich
		2D-flakes exhibit among the highest thermal conductivity in materials, which make them suitable for heat dissipation in microchip processes. However, it is challenging to produce thin homogenous flakes or transferring one flake onto a target because of the risk of damaging or contaminating the material. Thus, it is important to characterize the intrinsic properties of the materials with a consistent and reliable method. A novel four-terminal device is proposed which involves fabricating suspended four transducers, which can act as thermometer as well as heater, combined with the suspension of an h-BN flake. We demonstrate the capabilities of this novel four-terminal devices through electrical measurements and first results on h-BN flakes.
19:00		END; Transfer to Dinner
19:30		Conference Dinner

ID	SURFACES, INTERFACES AND THIN FILMS POSTER
241	Towards dielectric relaxation at a single molecule scale
	Stefan Müllegger ¹ , Simon Feigl ¹ , Jindrich Nejedly ² , Eva Rauls ³ , Michal Samal ² , Ivo Stary ² , Vitalii Stetsovych ¹ , Radovan Vranik ¹ , Bareld Wit ¹ ¹ Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz ² Inst. of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic ³ Institute for mathematics and physics, University of Stavanger, Norway
	Recent advances have turned the scanning tunnelling microscope (STM) into a single molecule identifica- tion tool. We apply a radio frequency STM to excite a single molecule junction based on a polar substituted helicene molecule by an electric field oscillating at 2 to 5 GHz. We detect the dielectric relaxation of the sin- gle molecule junction indirectly via its effect of power dissipation, which causes lateral displacement. From our data we determine a corresponding relaxation time of about 300 ps – consistent with literature values of similar helicene derivatives obtained by conventional methods of dielectric spectroscopy.
242	Controlling skyrmion density and formation mechanism by tuning ferromagnetic layer thicknesses in thin film multilayers
	Reshma Peremadathil Pradeep ¹ , Hans Josef Hug ^{1,2} , Andrada-Oana Mandru ¹ ¹ Empa, Swiss Federal Laboratories for Materials Science and Technology ² Department of Physics, University of Basel
	With the goal of controlling the skyrmion density and their formation mechanism, which are highly relevant for spintronic devices using skyrmions, we investigate [<i>Ir</i> (1 nm) / <i>Co</i> (<i>t</i>) / <i>Pt</i> (1 nm)] _n multilayers with varying Co-layer thickness. We observe that by increasing the Co layer thickness, domains (at zero field) become narrower, and skyrmion density (in an applied field) increases. This can be explained using the critical material parameter $\kappa = D/4 \cdot \sqrt{AK_{eff}}$, with <i>D</i> - interfacial DMI constant, <i>A</i> - exchange stiffness and K_{eff} - effective magnetic anisotropy. Skyrmions are thermodynamically stable for $\kappa > 1$. Here, κ increases as the effective anisotropy approaches zero at a critical Co-thickness. Furthermore, two different skyrmion formation mechanisms (shrinking and fission) are observed.
243	Magnetoelectric Coupling in La _{0.9} Ba _{0.1} MnO ₃ /BaTiO ₃ Multiferroic Heterostructures Imaged by X-ray Photoemission Electron Microscopy
	Gyanendra Panchal ¹ , Federico Stramaglia ¹ , Ludovica Tovaglieri ² , Celine Lichtensteiger ² , Frithjof Nolting ¹ , Carlos A. F. Vaz ¹ ¹ Paul Scherrer Institut, ² University of Geneva
	We report the direct XPEEM imaging of the magnetic response of a 4.8 nm $La_{0.9}Ba_{0.1}MnO_3$ film to the voltage applied across a 5 nm $BaTiO_3$ film. Ferroelectric patterns were written on the $BaTiO_3$ with an AFM in contact-mode and the change in magnetic contrast measured with XPEEM. We observe an increase in the magnetic contrast when going from negative to positive writing voltages. Temperature dependent measurements show a decrease in the Curie temperature for positive voltage above +6 V applied, corresponding to hole-depletion state. The magnetic contrast of the written areas are compared with SQUID-magnetometry results, confirming the behavior for accumulation/depletion states of the $La_{0.9}Ba_{0.1}MnO_3$ for the two polarizations of $BaTiO_3$.

Nuclear, Particle and Astrophysics (TASK - FAKT)

THIS SESSION HAS BEEN ORGANISED IN COLLABORATION WITH CHIPP.

Tuesday, 05.09.2023, Room 118

Time	ID	TASK I: LHC PHYSICS AND THEORY Chair: Anna Sfyrla, Université de Genève, Mauro Donegà, ETH Zürich
14:00	301	Searching for Higgs+charm production in the diphoton final state at CMS
		Tiziano Bevilacqua, University of Zürich, on behalf of the CMS collaboration
		The discovery of the Higgs boson at the LHC has opened a whole new chapter of exploration in particle physics, and the measurement of the Higgs boson couplings to second generation fermions is one of the next milestones of the LHC physics program. The associated production of a Higgs boson and a charm quark (o+H) is sensitive to the Higgs-charm coupling, and is yet to be probed experimentally at the LHC. This talk describes first studies to search for H+c production with CMS data in the diphoton channel.
	002	cancelled
14:15	303	Measurement of the lepton universality ratio B($\varphi ightarrow \mu\mu$) / B($\varphi ightarrow$ ee) using charm hadron decays.
		Davide Lancierini, University of Zürich
		I will present a test of lepton flavour universality performed using charm hadron $D^+_{\text{iel}} \to \pi^+ \phi(\ell^+ \ell^-)$ decays, with ℓ indicating either an electron or a muon. This measurement, performed using 5.4 fb ⁻¹ of data collected by the LHCb experiment, validates our understanding of detection efficiencies of low momentum leptons. The clean experimental signature of these decays allows not only for a detailed comparison of data and simulation for reconstructed electrons in the low q ² region, but also the mass resolution and h \rightarrow e misidentification backgrounds, which are all critical aspects of lepton universality measurements at the experiment.
14:30	304	Branching fraction measurement of the rare decay $B^{0} \to K\pi \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
		Martin Andersson, University of Zurich
		Measurements of $b \to s\mu\mu$ during the last decade show a consistent pattern of deviations with respect to Standard Model (SM) predictions across a large set of observables in various decay modes. The branching fraction measurement of $B^0 \to K^{-0}(892) (\to K\pi) \mu^+ \mu^-$, which includes the well studied $K^{-0}(892)$ resonance, show an abundance in the theory predictions with respect to the experimentally measured value. However to date, relatively little is known of the branching fraction of $B^0 \to K\pi\mu^+\mu^-$, where the $K\pi$ -system originates from heavier K^* states. To help further our understanding of the mismatch between theory and experiment in $b \to s\mu\mu$ transition, this project will probe the heavier, relatively unexplored part of the $K\pi$ -system in $B^0 \to K\pi\mu^+\mu^-$, with a measurement of the muon-mode branching fraction using 9 fb ⁻¹ of LHCb data.
14:45	305	Realistic SU(5) GUT with lower dimensional representations
		Kevin Hinze, Stefan Antusch, Shaikh Saad, University of Basel
		What is the minimal viable renormalizable SU(5) GUT with representations no higher than adjoints? In this talk I discuss an SU(5) model in which vectorlike fermions $5_F + 5_F$ as well as two copies of 15_H Higgs fields are introduced in order to accommodate for correct charged fermion and neutrino masses and to reproduce the matter-antimatter asymmetry of the universe. The presented model is highly predictive and will be fully tested by a combination of upcoming proton decay experiments as well as low energy experiments in search of flavor violations.

15:00	306	Probing multilepton decays with the LHCb experiment
		Vitalii Lisovskyi, EPFL
		Recently, a number of tensions has been observed in semileptonic decays of B hadrons to a lighter hadron and two leptons. With the large dataset collected by the LHCb experiment, it becomes possible to study higher-order processes. Emission of a virtual photon from the initial (final) state can create an additional dilepton pair, leading to a final state with four leptons. The experimentally clean multilepton signature allows to suppress background, rendering exploration of such decays interesting for testing the Standard Model. In this talk, multilepton decays of heavy-flavour hadrons will be discussed. Searches for such decays with the dataset collected by the LHCb experiment will be presented.
15:15	307	Search for the $B^{*} o K^{*} \mathcal{T}^{*} \mathcal{T}^{-}$ decay
		Maria Carolina Feliciano Faria, Fred Blanc, Aravindhan Venkateswaran, EPFL
		We search for the $B^* \to K^* \tau^+ \tau^-$ decay using data collected by the LHCb experiment, reconstructing the τ leptons in $\tau^+ \to \pi^* \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$. This decay is produced in electroweak penguin loop transitions, highly suppressed in the standard model. New models explaining the tensions observed in $b \to s l^* l^-$ and $b \to c l \bar{\nu}$ transitions also predict enhancements of the $b \to s\tau\tau$ branching fractions of up to $O(10^3)$ over the standard model prediction. We present initial studies of the reconstruction of this decay, the analysis of potential background sources and a preliminary estimate of our sensitivity to this channel.
15:30	308	Vector Glueballs in Holographic QCD
		Florian Hechenberger, Josef Leutgeb, Anton Rebhan, Vienna University of Technology
		Gauge/Gravity duality has led to novel insights in the strong coupling behaviour of large Nc QCD. Most notably is the type IIA supergravity construction by Witten, which was extended by Sakai and Sugimoto to include chiral quarks. This setup enables one to study interactions between glueballs, mesons and photons in an almost parameter-free manner. After giving a brief introduction to the model, I will focus on the decay rates of the vector glueball, its mixing with vector mesons as well as its connection to the longstanding $\rho\pi$ -puzzle and the Odderon.
15:45	309	Search for ${\rm K}_s^{} \to \pi^*\pi^-\mu^*\mu^-$ with the Run II LHCb data
		Luis Miguel Garcia Martin, EPFL, Radoslav Marchevski, CERN
		Rare kaon decays are among the most sensitive probes of both heavy and light New Physics. In particular, the $K_{_S} \rightarrow \pi\pi\mu\mu$ process is of $O(10^{-14})$ in the SM, and can be enhanced by up to a 100 times by exotic BSM models. Unlike the challenges faced by feasibility studies of $K_{_S} \rightarrow \pi^+\pi^-\mu^+\mu^-$ decays due to the presence of electrons, $K_{_S} \rightarrow \pi^+\pi^-\mu^+\mu^-$ is expected to be very clean given the LHCb performance on pion and muon reconstruction. Additionally, this decay presents an opportunity to test for CP violation. We report the status of the first $K_{_S} \rightarrow \mu\mu\pi\pi$ decay search using Run 2 LHCb data.
16:00		
16:30		Coffee Break

Time	ID	TASK II: MUON
		Chair: Anna Sótér, ETH Zürich
	011	cancelled
17:00	312	Towards High-Resolution X-Ray Spectroscopy of Muonic Lithium using Metal- lic Magnetic Microcalorimeters
		Katharina von Schoeler, ETH Zürich, for the QUARTET Collaboration
		Precision measurements of nuclear charge radii provide important inputs for modern nuclear the- ory, helping to improve our understanding of nuclear forces. The spectroscopy of muonic atoms is known as a highly precise method for such measurements. However, in the case of low- to medium-Z nuclei, the covered energy range has so far been difficult to access using laser spectros- copy or conventional solid-state detectors. The new QUARTET collaboration addresses this gap for the first time using metallic magnetic microcalorimeters, combining high quantum efficiencies, broadband-spectra and record-resolving power. This contribution presents plans and status of a first experiment aiming at the spectroscopy of muonic ⁶ Li and ⁷ Li at the Paul Scherrer Institute.
17:15	313	The Injection Channel of the muEDM Experiment
		Anastasia Doinaki, Philipp Schmidt-Wellenburg, Paul Scherrer Institut
		At the Paul Scherrer Institute we are setting up an experiment to search for the muon EDM. This talk focuses on the off-axis injection of the muons into a 3 T storage solenoid. The injection channel needs to be magnetically shielded, so muons can pass from the exit of the beamline, low magnetic field region, into the high magnetic field region of the solenoid. In the fringe magnetic field, below 1 T, we will use an iron tube, while inside the solenoid bore, above 1 T, we will use a superconducting (SC) shield. The effectiveness of three SC-shield prototypes will be tested by measuring their shielding factors and calculating the muon injection efficiency.
17:30	314	Muonic atom spectroscopy with radioactive targets
		Stergiani Marina Vogiatzi, Paul Scherrer Institut, for the MUX collaboration
		MuX, an experiment running at PSI, aims to measure the nuclear charge radius of radioactive isotopes, such as ²²⁸ Ra and ²⁴⁸ Cm, using muonic atoms. With safety regulations imposing the usage of only microgram quantities of radioactive material the standard method to form a muonic atom by direct muon capture cannot be implemented. A technique that employs muon transfer reactions in a high-pressure cell filled with D_{z}/H_{z} mixture is used instead. This enabled the measurement of ²²⁸ Ra and ²⁴⁸ Cm in 2019. Despite no $2p \rightarrow 1$ s muonic x rays being observed for radium, we are close to determining the charge radius in ²⁴⁸ Cm. This contribution presents the status of the muX experiment.
17:45	315	Optimization of muon EDM experimental setup using simulations
		Ritwika Charkaborty, Paul Scherrer Institut, for the muEDM collaboration
		The potential discovery of non-zero electric dipole moments (EDMs) of leptons implies Charge-Par- ity violation beyond the Standard Model. This makes the experimental search for lepton EDMs a valuable tool to test scenarios explaining observations like matter-antimatter asymmetry, non-zero neutrino masses, and dark matter. A dedicated experimental search for the muon EDM is under- way at PSI using the frozen spin technique, which suppresses the anomalous spin precession of muons in a storage ring by applying a radial electric field. The experiment has two phases, with the first phase demonstrating the frozen spin technique. This talk describes the optimization of the first phase of the experiment through simulation studies.

18:00	316	Development of a frozen-spin muon trap for the search for a muon electric dipole moment
		Timothy Hume, Philipp Schmidt-Wellenburg, Paul Scherrer Institute, on behalf of the muEDM Collaboration
		The muEDM Collaboration is searching for the muon EDM by implementing, for the first time, the frozen-spin technique [Farley et al. (2004), PRL:93:052001]. A factor 1000 improvement upon the current limit $d_{\mu} < 1.8 \cdot 10^{-19}$ ecm (95 % C.L.) [Bennett et al. (2009), PRD:80:052008] is expected from this approach. A sub-microsecond trapping scheme is being developed to store 28 MeV/c muons on a circular orbit exposed to a 0.3 MV/m radial electric field inside a 3 T solenoid. A pulsed magnetic field will accordingly kick the longitudinal momentum of injected muons, thereafter axially confined by a static weakly-focusing magnetic field. Prototypes are being tested to explore different field geometries and study the effect of eddy currents on the frozen-spin conditions.
18:15	317	Systematic effects in the search for the muon EDM using the frozen-spin method
		Chavdar Dutsov, Paul Scherrer Institut, on behalf of the muonEDM collaboration
		At the Paul Scherrer Institute we are developing a high precision instrument to measure the electric dipole moment (EDM) of the muon using the frozen-spin method to suppress the anomalous precession of the muon spin. With this technique, the expected statistical sensitivity for the EDM after one year of data taking is $6 \times 10^{-23} e \cdot cm$. Reaching this goal necessitates a comprehensive analysis on effects that mimic the EDM signal. This work discusses a quantitative approach to study systematic effects when searching for the muon EDM. Equations for the motion of the muon spin in the electromagnetic fields of the experimental system are analytically derived and validated by simulation.
18:30		
19:00		Postersession with Apéro

Wednesday, 06.09.2023, Room 118

Time	ID	TASK III: LOW ENERGY AND ANTIMATTER
_		Chair: Eberhard Widmann, Österreichische Akademie der Wissenschaften
14:30	321	The n2EDM experiment – A high-sensitivity search for physics beyond the Standard Model
		Victoria Kletzl, Paul Scherrer Institut, on behalf of the NEDM collaboration
		The existence of a neutron electric dipole moment (nEDM) would simultaneously violate parity and time symmetries, representing an additional channel of charge-parity violation. Therefore, it is an excellent testing ground for physics beyond the Standard Model (BSM). The international nEDM collaboration is currently commissioning the n2EDM experiment at the ultra cold neutron (UCN) source at the Paul Scherrer Institute. It aims for a tenfold improvement in sensitivity relative to the current best upper limit of $1.8 \cdot 10^{-26}$ e-cm (90 % C.L.) measured by our collaboration with the predecessor apparatus. This talk will present an overview of the new experiment and commissioning measurements. This work is supported by SNF#188700.
14:45	322	The ¹⁹⁹ Hg co-magnetometer in the n2EDM experiment
		Wenting Chen, Paul Scherrer Institut, on behalf of the NEDM collaboration
		The n2EDM experiment at the Paul Scherrer Institut searches for a permanent neutron electric dipole moment. For the purpose of correcting magnetic field fluctuations in its setup, a laser-based ¹⁹⁹ Hg co-magnetometer has been developed. The optical pumping of the ¹⁹⁹ Hg atoms (I=1/2) with a UV laser leads to the nuclear spin polarization. The laser is also used to extract the spin precession frequency of ¹⁹⁹ Hg atoms cohabiting in the same volume as the neutrons.

		This talk will present the principle of the ¹⁹⁹ Hg co-magnetometer, improvements in laser stabiliza- tion, setting up the laser light transport over 20 meters, and a study of the ¹⁹⁹ Hg-related systematic effects. SNF#204118 supported
15:00	323	Commissioning of the ultracold neutron guide system for the n2EDM experiment at PSI
		Cornelis Bernardus Doorenbos, Paul Scherrer Institut, on behalf of the nEDM collaboration
		In the search for the neutron electric dipole moment, we are setting up the n2EDM experiment (Eur. Phys. J. C 81, 512 (2021)) at the ultracold neutron (UCN) source at PSI. We created a new, efficient UCN guide system to transport neutrons from the source to the experiment. The UCN guides are made of glass and highly polished aluminium, and are coated inside with a nickel-molybdenum alloy for high reflectivity. I will present the status of the commissioning of the guide system. This includes quality control, such as checking for magnetic impurities, UCN transmission measurements, and Monte Carlo UCN transport simulations to understand our measurements. Supported by SNF Grant #188700
15:15	324	An active magnetic shield for the n2EDM experiment
		Nathalie Ziehl, ETH Zürich
		The search for the neutron electric dipole moment at PSI requires a stable, uniform magnetic field environment in the experimental chamber. To shield the n2EDM-experiment from slowly varying magnetic fields caused by neighbouring experiments we have constructed an intricate system of coils around the experiment, designed to compensate magnetic fields through an active feedback loop. The design for the active magnetic shield (AMS) was first presented in 2019. Now the AMS is fully constructed and able to compensate static and variable fields of up to $50 \mu\text{T}$ in the sub-Hertz frequency range. We will present the apparatus as built, performance measurements and strategies for further improvements of the system.
15:30	325	Measuring the free neutron lifetime with the τSPECT experiment at the Paul Scherrer Institute
		Dieter Achim Ries, Paul Scherrer Institut
		Ultracold Neutrons (UCN) provide a unique tool for fundamental low energy particle physics and in particular measurements with neutrons with long observation times. The τ SPECT experiment, which has been developed and built at Johannes Gutenberg University Mainz, Germany, and is currently being set up at the UCN source at Paul Scherrer Institute, aims to utilize this fact in order to precisely measure the free neutron lifetime. τ SPECT is the first neutron lifetime experiment using 3-dimensional magnetic storage of spin polarized UCN and uses the spin-flip loading technique to transport UCN into the trap. The τ SPECT experiment and first results from commissioning with neutrons at PSI will be presented.
15:45	326	Status of GBAR: First results of Antihydrogen production
		Philipp Peter Blumer, Paolo Crivelli, ETH Zürich
		The GBAR collaboration at CERN aims to directly test the Weak Equivalence Principle with a free fall of ultracold antihydrogen H in Earth's gravitational field. The main principle is to first produce an antihydrogen ion H ⁺ and sympathetically cool it to μ K temperature. The excess positron is then photodetached and the neutral anti-atom experiences a classical free fall. By measuring the time of flight and the annihilation position of the H we determine its acceleration with a precision of 1 % in a first phase. I will present first evidence of H production in 2022, a milestone for the experiment, as well as the status and future prospects of GBAR.

16:00	327	GRASIAN: Towards the first demonstration of gravitational quantum states of atoms
		Carina Killian ¹ , Philipp Peter Blumer ² , Paolo Crivelli ² , Otto Hanski ³ , Valery Nesvizhevsky, Francois Nez ⁴ , Katharina Schreiner, Sergey Vasiliev ³ , Eberhard Widmann ¹ , Pauline Yzombard ¹ Austrian Academy of Sciences, ² ETH Zürich, ³ University of Turku, ⁴ Laboratoire Kastler Brossel
		At very low energies, an atom above a horizontal surface can experience quantum reflection due to the attractive Casimir-Polder potential. The quantum reflection holds the atom against gravity and leads to quantum gravitational states (GQS), in analogy to what has been observed with ultracold neutrons.
		The GRASIAN-collaboration pursues the first measurement of GQS of atomic hydrogen. The use of hydrogen is not only motivated by the fact, that GQS have never been observed with atoms. The enhanced statistics available through the use of hydrogen atoms (versus ultracold neutrons) will increase the sensitivity to deviations from Newtonian Gravity.
16:15	328	Validation of Monte Carlo Simulations for Antiproton-Nucleus Annihilation at Rest Using Thin Targets
		Angela Gligorova, Austrian Academy of Sciences
		Several approaches have been proposed for modelling antiproton-nucleus annihilation at rest, but a complete description of the process is still lacking, as well as systematic data. This talk focuses on recent experimental results from annihilation measurements at the ASACUSA experiment, using slow extracted antiprotons and targets of 1-2 μ m thickness. The prongs from individual annihilation events in carbon, molybdenum and gold were detected combining two detectors, resulting in their multiplicity and energy distributions, which are compared to current Monte Carlo simulations. The discrepancies will be discussed quantitatively and qualitatively. The A-dependence of the average multiplicities for heavy prongs, usually stopped in the target in previous experiments will be also shown.
16:30		Coffee Break
16:30		TASK IV: DETECTOR / DAQ AND ALGORITHMS
	221	TASK IV: DETECTOR / DAQ AND ALGORITHMS Chair: Paolo Crivelli, ETH Zürich
16:30 17:00	331	TASK IV: DETECTOR / DAQ AND ALGORITHMS Chair: Paolo Crivelli, ETH Zürich The Hybrid seeding: flexibility begets flexibility
	331	TASK IV: DETECTOR / DAQ AND ALGORITHMS Chair: Paolo Crivelli, ETH Zürich
	331	TASK IV: DETECTOR / DAQ AND ALGORITHMS Chair: Paolo Crivelli, ETH Zürich The Hybrid seeding: flexibility begets flexibility Louis Henry, CERN The Hybrid seeding is the standalone reconstruction algorithm of the forward tracker at LHCb, orig- inally designed to run on CPUs at a 1MHz throughput. We will explore how, through reformulations and better memory handling, a version of this algorithm is now a core part of the 30 MHz LHCb GPU-based trigger. In this presentation, we will discuss the main takeaways of this challenging en- deavour and the way dedicated GPU programming can unlock signatures that seemed impossible
17:00		TASK IV: DETECTOR / DAQ AND ALGORITHMS Chair: Paolo Crivelli, ETH Zürich The Hybrid seeding: flexibility begets flexibility Louis Henry, CERN The Hybrid seeding is the standalone reconstruction algorithm of the forward tracker at LHCb, orig- inally designed to run on CPUs at a 1MHz throughput. We will explore how, through reformulations and better memory handling, a version of this algorithm is now a core part of the 30 MHz LHCb GPU-based trigger. In this presentation, we will discuss the main takeaways of this challenging en- deavour and the way dedicated GPU programming can unlock signatures that seemed impossible to reach when designing the detector. Machine Learning Techniques for Triggering Forward Electrons

17:30	333	Monitoring of the radiation damage induced aging of the LHCb SciFi tracker SiPMs during the first year of Run 3.
		Federico Ronchetti, Guido Haefeli, Elisabeth Maria Niel, EPFL
		We studied the radiation induced damage of the SiPM photo-detectors of the LHCb SciFi Tracker during the first year of Run 3. The bias current monitoring allows to evaluate the Dark Count Rate (DCR) and leads to an estimation of the detector aging as a function of the integrated luminosity. During the YETS the detector was monitored at room temperature and the effect of annealing (reduction of DCR in absence of the beam) was observed. In early 2023 a dedicated cooling temperature scan was performed and the DCR as a function of temperature in the [-50, 20]°C range was recorded and compared to expected values from R&D.
17:45	334	New Hardware for Next-Generation Detectors:
		Studying the Performance of R12699-406-M4 PMTs in Cryogenic Xenon
		Maximinio Adrover, Alexander Bismark, University of Zürich
		The proposed next-generation dark matter experiment DARWIN, an underground multi-tonne scale detector with a time projection chamber at its core, aims to reach unprecedented sensitivities in probing further into the WIMP parameter space and other new physics interactions, such as neutrinoless double beta decay. To achieve these ambitious goals, extensive R&D campaigns are currently in progress, one of which consists of characterizing promising novel photosensors. We will present performance studies of Hamamatsu R12699-406-M4 flat panel photomultiplier tubes in xenon, conducted at our test facility MarmotX at the University of Zürich. Furthermore, a kg-scale TPC design to study the PMT performance in realistic experimental conditions is presented.
	885	cancelled
18:00	336	The DAQ system of the Mu3e SciFi detector
		Yifeng Wang, ETH Zürich
		Looking for beyond Standard Model phenomena, Mu3e is an experiment under construction at PSI dedicated to the search of the charged lepton flavor violating $\mu \rightarrow \text{eee}$ decay at branching fractions above 10^{-16} . Achieving such sensitivity requires a high rate of muons and excellent time resolution to suppress the accidental background. To this end, the scintillating fiber (SciFi) sub-detector system is designed to achieve a very precise time measurement (~250 ps). Consequently, its associated DAQ sub-system is aimed to readout the detector with up to 1MHz event rate per channel. In this talk, the DAQ system of SciFi detector is presented.
18:15	337	The monolithic ASIC for the high precision preshower detector of the FASER experiment at the LHC
		Chiara Magliocca ¹ , Giuseppe Iacobucci ¹ , Lorenzo Paolozzi ² , Stefano Zambito ¹ , Thanushan Kugathasan ² , Roberto Cardella ¹ , Jorge Andres Sabater Iglesias ¹ , Carlo Alberto Fenoglio ² , Théo Moretti ¹ , Rafaella Eleni Kotitsa ¹ , Andrea Pizarro Medina ² ¹ Université de Genève, ² CERN
		The FASER experiment at the LHC will be instrumented with a high precision W-Si preshower to identify and reconstruct electromagnetic showers produced by two O(TeV) photons at distances

18:30	338	The ATLAS ITk Pixel Optosystem
		Daniele dal Santo, Universität Bern
		After Run III the ATLAS detector will be upgraded to cope with the harsher radiation environment and increased number of proton interactions in the high luminosity LHC. One of the key projects in this suite of upgrades is the ATLAS Inner Tracker (ITk). The Pixel Detector of the ITk must be read out accurately and at an extremely high rate and for this it relies on the Optosystem, which performs optical-to-electrical conversion of signals from the pixel modules. Recent Optosystem results on the test of the performance of the data transmission chain pivoted on the Optoboards and on the design, testing and production of the Optopanels will be presented.
18:45	339	The SST-1M:
		A new stereoscopic Imaging Atmospheric Cherenkov Telescope system
		Matthieu Heller, Université de Genève
		The SST-1Ms are two single-mirror small-sized telescope prototypes developed by a team of Swiss, Polish and Czech institutes. The telescopes adopt a Davies-Cotton optical design, with a dish of 4 m diameter and a focal of 5.6 m. With a wide field of view of 9 degrees, SST-1M is designed to detect gamma rays in the energy range between 500 GeV and 100 TeV. SST-1M is equipped with the DigiCam camera composed of 1296 pixels, which incorporates a fully digital readout and trigger system running at 250 MHz. Each pixel consists of a hexagonal hollow light guide coupled to silicon photomultipliers (SiPM). Currently, two SST-1M telescopes are undergoing commissioning at the Ondrejov Observatory in the Czech Republic. A fully automatic and remote operation of the two telescopes has allowed for numerous hours of observations of the Crab Nebula and the nearest and brightest blazars Mark 421 and 501. Recently, the acquisition of stereoscopic data has been enabled improving significantly the sensitivity of the system. This contribution will provide an overview of the telescope and camera design, including the performance evaluation of the SST-1M telescopes. Additionally, preliminary results obtained from the commissioning data collected at the observatory will be presented.
19:00	340	MONOLITH - picosecond time stamping capabilities in fully-monolithic highly-granular silicon pixel detectors
		Matteo Milanesio ¹ , Roberto Cardella ¹ , Giuseppe Iacobucci ¹ , Thanushan Kugathasan ² , Théo Moretti ¹ , Lorenzo Paolozzi ² , Antonio Picardi ¹ , Stefano Zambito ¹ ¹ Université de Genève, ² CERN The MONOLITH ERC Advanced project aims at producing a monolithic silicon pixel ASIC with
		50μ m pixel pitch and picosecond-level time stamping. The two main ingredients of the project are fast and low-noise SiGe BiCMOS electronics and a novel sensor concept, the Picosecond Avalanche Detector (PicoAD). Testbeam measurements of the proof-of-concept PicoAD prototype show full efficiency and time resolutions of 13 ps at the center of the pixel and 25 ps at the pixel edge, for an average of 17ps over the pixel surface.
		A second monolithic prototype with improved electronics, produced on a 350 Ω cm substrate without an internal gain layer, provides 20 ps time resolution.
19:15		

Thursday, 07.09.2023, Room 118

Time	ID	TASK V: Collider Dark Sector and Neutrinos Chair: Vitalii Lisovskyi, EPFL
17:00	341	Search for Dark Sector particles at LHCb
		Pasquale Andreola, University of Zurich
		The Dark Sector is a collection of hypothetical particles that would interact very weakly with Stand- ard Model particles. Thanks to its forward instrumentation and its excellent vertex resolution, the LHCb experiment plays a unique role in the search for Dark Sector particles at LHC. Some re- sults from searches for hidden-sector particles (e.g. dark photons, heavy neutral leptons and dark matter candidates produced from heavy-flavour decays) will be presented. An outlook on future measurements in some of these channels, such as axion-like particles decaying into hadrons, will be discussed.
17:15	342	Latest results of NA64 searching for Dark Sectors at the CERN SPS
		Benjamin Banto Oberhauser, Martina Mongillo, Paolo Crivelli, ETH Zürich
		NA64 is a fixed-target frontier experiment running at the CERN SPS. NA64 searches for possible candidates of mediators between the dark sector and the standard model by looking for missing energy events in an active beam dump. After resuming data taking in 2021, NA64 has tripled its statistics, allowing us to set leading constraints to dark sector mediators in the light dark matter parameter space. This talk will focus on the latest results from the analysis of the 2021-2022 data as well as the current status of the experiment.
17:30	343	Semi-visible dark photons at the NA64 experiment
		Martina Mongillo, Benjamin Banto Oberhauser, Paolo Crivelli, ETH Zürich
		Beyond the minimal kinetically-mixed dark photon scenarios predicting fully visible and fully invisi- ble mediator decays, next-to-minimal theories have been considered as compelling frameworks for thermal dark matter and some low-energy anomalies, as the muon g-2. This talk will showcase the potential of the NA64 experiment in the exploration of rich dark sectors in which the dark photon is semi-visible. The NA64 invisible results have been re-interpreted in the context of two inelastic dark matter models to account for the different signal signature, entailing both missing energy and visible final states.
17:45	344	Measurement of the X17 anomaly with the MEG II detector
		Giovanni Dal Maso, Paul Scherrer Institut, for the MEG II Collaboration
		In 2016 the ATOMKI collaboration measured an anomaly in the angular distribution of the pair pro- duced by the M1 transition of the isoscalar 1+ state on ⁸ Be, which might be explained by creation and decay of a boson, the X17, with mass 17.0 MeV/c ² . The result was later confirmed in the 0-/0+ transition in Helium. The apparatus of the MEG II experiment has been employed at the beginning of 2023 to measure such anomaly with a LiPON target and a different detection technique based on the COBRA spec- trometer and the Cylindrical Drift Chamber. We present the details of the set-up and the current status of the analysis.
18:00	345	The SND@LHC detector
		Anni Kauniskangas, EPFL
		SND@LHC is a compact stand-alone experiment designed to study neutrinos produced at the LHC. The detector consists of a hybrid target made of emulsion cloud chamber walls interleaved with scintillating fibre planes, followed by a hadronic calorimeter and muon system based on scin- tillating bars. The active detectors are read out with silicon photomultipliers and custom electron- ics that allow for amplitude measurement and precise timing. The data acquisition operates trig- ger-lessly, with online event building and noise suppression being performed on a central server. This talk will focus on describing the SND@LHC detector system, its commissioning, and the first years of data taking.

18:15	346	Observation of collider neutrinos with SND@LHC
		Martina Ferrillo, University of Zürich
		The SND@LHC is a recently approved and running experiment at the Large Hadron Collider (LHC) performing neutrino physics and searches for feebly interacting particles. It collects human-made neutrinos in the uncharted TeV energy scale from pp collision at the ATLAS interaction point. This talk will focus on the first physics result of the experiment, namely the observation of collider neutrinos at the LHC.
18:30	347	Status of FASERnu
		and development of neutrino energy reconstruction algorithms
		Jeremy Atkinson, Universität Bern
		FASERnu, in the LHC-FASER experiment at CERN, studies collider neutrinos. It consists of 730 alternating emulsion films and tungsten plates, resulting in a target mass of 1.1 tonnes. Data-taking began in 2022, and will continue until the end of 2025. In 2022, due to the track occupancy in emulsion, three data-taking periods were successfully carried out, each requiring darkroom assembly and development campaigns. To measure neutrino interaction cross-sections, the energy of incident neutrinos must first be reconstructed. This is investigated using both model-independent variables and Neural Network techniques. In this talk, I will report on the status of FASERnu and discuss the development of energy reconstruction algorithms.
18:45	348	The LEGEND experiment in a search for neutrinoless double beta decay
	• • •	Marta Babicz, University of Zürich
		The LEGEND experiment is designed to detect lepton-number violation and shed light on neutri- no masses by hunting for neutrinoless double beta decay. The experiment employs high-purity, enriched in ⁷⁶ Ge germanium detectors and an active liquid-argon shield to minimize background events. In the first phase, the experiment will use 200 kg of Ge crystals to reach a half-life discovery sensitivity of 10 ²⁷ years. In the second phase, 1000 kg of detectors will be deployed to boost the discovery sensitivity beyond 10 ²⁸ years. Thanks to its exquisite energy resolution and ultra-low background levels, LEGEND will perform a quasi-background-free search for an unambiguous signature at the Q-value of the decay of 2039 keV.
19:00	349	Deep learning methods for neutrino event reconstruction
		Saul Alonso Monsalve, ETH Zürich
		Deep learning methods are becoming key in the data analysis of particle physics experiments. One clear example is the improvement of neutrino detection using neural networks. Current neutrino experiments are leveraging these techniques, which, in combination, have exhibited to outperform standard tools in several domains, such as identifying neutrino interactions or reconstructing the kinematics of single particles. In this talk, I will show various deep-learning algorithms used in the context of voxelised neutrino detectors. I will present how to design and use advanced deep-learning techniques for tasks such as fitting particle trajectories and understanding the particles involved in the vertex activity. All these methods report promising results and are crucial for improving the reconstruction of the interacting particle kinematics and enhancing the sensitivity to future physics measurements.
19:15		Transfer to Dinner
19:30		Conference Dinner

Friday, 08.09.2023, Room 118

Time	ID	TASK VI: DARK MATTER AND NEUTRINOS Chair: Ben Kilminster, Universität Zürich
12:00	351	Overview of Neutrino Physics in Switzerland
		Richard Diurba, Universität Bern
		Neutrino physics is a field of high energy physics measuring neutrino properties, such as cross sections, masses, and oscillation parameters. Currently, the field lies at a crossroads. A new generation of neutrino experiments, such as DUNE and Hyper-K, are planned in the following decades, requiring significant resources in detector design and construction efforts. Additionally, physicists have been measuring cross sections and creating tools for future experiments while simultaneous-ly continuing to make fundamental measurements. Switzerland reflects this trend and has scientists on past, current, and future experiments across neutrino energy ranges. The talk represents a survey of the experiments and projects with Swiss participation and an outlook on the upcoming plans of the field. The talk will highlight how and why current analyses impact the next-generation neutrino experiments.
	352	moved to talk 349
12:30	353	Recent results from XENONnT
		Christian Wittweg, Physik-Institut, University of Zürich, on behalf of the XENON collaboration
		XENONnT is a direct dark matter search experiment located at Laboratori Nazionali del Gran Sas- so in Italy. Due to its unprecedentedly low background and the large target mass of 5.9 tonnes of liquid xenon in a dual-phase time projection chamber, it is sensitive to a wide range of signals within and beyond the Standard Model. These include weakly interacting massive particles, solar axions, bosonic dark matter, solar neutrinos and rare nuclear decays. In this contribution, I will present the XENONnT experiment and show results from its first science run.
12:45	354	DARWIN: a next-generation observatory for dark matter and neutrino physics
		Mariana Rajado Silva, Uni Zürich
		The long-awaited detection of dark matter is dependent upon the design of sufficiently large, ra- dio- pure and sensitive detectors. DARWIN is a next-generation dark matter observatory which will probe the accessible parameter space for WIMPs. It will comprise a dual-phase time projection chamber containing 40 t of liquid xenon. Ultra-low background levels are ensured by the selected low-emanation materials. Its low-energy threshold and high energy resolution will also allow for the exploration of other science channels, such as solar axions or neutrinoless double beta decay of ¹³⁶ Xe. This talk will focus on the status of DARWIN, its broad science reach, and the main R&D topics being developed within the project.
13:00	355	Xenoscope - a full scale vertical demonstrator for the DARWIN observatory
		Paloma Cimental Chavez ¹ , Marta Babicz ¹ , Laura Baudis ¹ , Alexander Bismark ¹ , Jose Javier Cuenca Garcia ² , Michelle Galloway ¹ , Frédéric Girard ¹ , Ricardo Peres ¹ , Mariana Rajado Silva ¹ , Diego Ramírez García ³ , Christian Wittweg ¹ ¹ Physik-Institut, University of Zürich, ² Karlsruhe Institute of Technology (KIT), ³ Universität Freiburg im Br.
		The DARWIN observatory is a proposed next-generation experiment for dark matter detection and neutrino physics. Darwin will feature a 50-ton liquid xenon target enclosed in a dual-phase time projection chamber. The realization of this multi-ton scale detector requires addressing a series of technological challenges; to this end, a full-scale vertical demonstrator, Xenoscope, was built at UZH. The Xenoscope facility will be used to demonstrate the drift of electrons in LXe over a 2.6 m distance, as well as to perform electron cloud diffusion studies and measurements of the LXe optical properties. We present an overview of the Xenoscope facility, its current status, and future measurement campaigns.

13:15	356	Density-functional theory description of xenon for light dark matter direct detection
		Luca Marin ¹ , Marek Matas ¹ , Nicola Spaldin ¹ , Einar Urdshals ² , Riccardo Catena ² ¹ ETH Zürich, ² Chalmers University of Technology
		We present a detailed density functional theory (DFT) study of the electronic structure of atomic and liquid xenon, as a first step in quantifying the event rates in operating xenon-based detectors based on dark matter (DM) - electron scattering. Our main goal is to determine whether explicit modelling of the inter-atomic interactions in the liquid state changes the predicted event rates compared with current state-of-the-art models based on isolated Xe atoms.
13.30	357	COSINUS: Investigating the Dark Matter Origin of DAMA/LIBRA Results Using Nal as a Cryogenic Calorimeter
		Rituparna Maji, HEPHY and TU Wien
		The DAMA/LIBRA experiment has been reported to observe an annually modulating signal com- patible with the expected dark matter (DM) event rate for more than two decades. However, these results have not been confirmed by any other direct DM searches, emphasizing the need for a model-independent validation using the same detector material: sodium iodide (NaI) crystals. Cryogenic Observatory for SIgnals seen in Next-generation Underground Searches (COSINUS) will provide a reliable comparison with DAMA/LIBRA by operating NaI as cryogenic calorimeters. COSINUS is expected to begin taking data at the beginning of 2024. In this presentation, we will present its key features and challenges including its current status, and future goals.
13:45	358	The NUSES space mission
		Caterina Trimarelli, Université de Genève
		The NUSES space mission is a novel project based on a satellite developed by TAS-I housing two payloads known as TERZINA and ZIRÈ. ZIRÈ is designed to explore low-energy cosmic rays and gamma rays for instance from gamma-ray bursts. ZIRÈ will conduct measurements of electrons, protons, and light nuclei ranging from a few to hundreds of MeV and new tools for detecting cosmic MeV photons and monitoring magnetosphere-ionosphere-lithosphere coupling (MILC) signals. TERZINA, the detector on which the presentation focuses, is a pathfinder for Cherenkov detection from space emitted by atmospheric showers created by ultra-high-energy cosmic rays (UHECRs) in the limb of the Earth's atmosphere. TERZINA is a pathfinder also towards the detection of high-energy astrophysical neutrinos skimming the Earth's surface. Additionally, NUSES aims to pave the way for technology in space for future missions by testing silicon photomultipliers and innovative low-power-consuming electronics. TERZINA will provide valuable insights for potential future physics missions, such as POEMMA, which is focused on UHECR detection and UHE neutrino astronomy. This presentation will discuss the current status of the NUSES project design, as well as the scientific and technological objectives of the mission.
14:00		END

ID	TASK Poster
361	Prospects to the PIONEER Experiment
	Stefan Hochrein, ETH Zürich
	Towards a next-generation rare pion decay experiment located at PSI.

362	Measurement of the Isotopic Composition of Light Nuclei in Cosmic Rays with AMS
	Manbing Li, Universite de Genève
	The Alpha Magnetic Spectrometer operating on the International Space Station is a cutting-edge detector that is measuring spectra of cosmic ray particles and nuclei, including the isotopic composition of light nuclei, which is essential to understand cosmic ray propagation and origin. The ¹⁰ Be/ ⁹ Be ratio measures the cosmic ray propagation volume in the Galaxy, and the ⁶ Li/ ⁷ Li ratio tests the existence of primordial lithium. Current measurements are limited to energies below 2 GeV/n and are affected by large uncertainties. AMS is able to extend the measurement of the isotopic compositions up to 11 GeV/n. In this contribution, measurements of Lithium, Beryllium and Boron isotopic fluxes with AMS data will be presented.
363	Study of Low Energy Antiproton Annihilations on Nuclei
	Viktoria Kraxberger, Angela Gligorova, Austrian Academy of Sciences
	The experiments at CERN's Antiproton Decelerator detect antimatter through its annihilation, making the antiproton-nucleus ($\bar{\rho}A$) interaction one of the main processes of interest. As the annihilation mechanism itself is not well understood, a beamline for sub-keV antiprotons is built at the ASACUSA facility to measure the $\bar{\rho}A$ annihilation at rest for a variety of nuclei. Surrounding a thin target foil a detection system using Time-pix4 detectors measures the total multiplicities of prongs and their kinetic energies. Minimum and heavily ionising particles will be identified and individual annihilation events reconstructed. This experiment will allow a precise study of possible final state interactions and its results will be implemented into simulation models.
364	Calibration of Xenoscope, the full-scale vertical DARWIN Demonstrator
	Andrej Maraffio, Uni Zürich
	DARWIN is a proposed next-generation dark matter observatory that aims to detect Weakly Interacting Massive Particles (WIMPs) using 40 t of instrumented liquid xenon. Due to its large dimensions together with the technical and scientific challenges involved, Xenoscope, a full-scale vertical demonstrator, was built to test and refine the necessary technologies. This prototype was constructed to demonstrate electron drift in liquid xenon over a 2.6-m distance, thus serving as a key R&D component for the DARWIN. Calibrations are needed to estimate the electron lifetime in liquid xenon. In this contribution, I will present an overview of how radioactive sources are used in the calibration phase of Xenoscope.
365	A positron trap for observing molecules containing positronium
	Alina Weiser, Austrian Academy of Sciences
	A positron trap is a powerful tool for performing experiments with positrons and positronium. This type of device can typically produce ~105 e*/s in bunches with a diameter of 1 - 2 mm and an energy spread of approximately 50 meV.
	We aim to use these positron pulses to observe molecules containing positronium, such as PsH and PsO via collisions in gases such as methane and carbon dioxide. By using a high-mass resolution ion spectrometer to detect fragments from dissociation, precise measurement of their binding energy will be performed. This poster will describe the positron beam, trap, and ion spectrometer and show first trapping results from the newly constructed positron beamline.
366	Measurement of the Branching Fraction $\mathcal{B}(B^+ \to \overline{D^0}K^+)$ using 186.75 fb ⁻¹ of Υ (4S) data from Belle II
	Nikolaus Schneider, Cristhian Xavier Brito Ricaurte, Christoph Schwanda, Austrian Academy of Sciences
	We present a measurement of the Branching Fraction $\mathcal{B}(B^* \to \overline{D^*}K^*)$ using 186.75 fb ⁻¹ of $\Upsilon(4S)$ Belle II data gathered from 2019 to 2021. To extract the signal yield, we fit over reconstructed events corresponding to $B^* \to \overline{D^*}K^*$ with $\overline{D^*} \to K^*\pi^-$ which are distributed over the beam to <i>B</i> energy deviations at center-of-mass, ΔE . The beam energy furthermore constraints the invariant mass of the <i>B</i> products. Our focus lies on the appropriate fitting analysis methods used on a Monte Carlo simulated event dataset and how its analysis can serve to obtain a reliably unbiased measurement of a branching fraction from a real dataset.

Accelerator Science and Technology

Thursday, 07.09.2023, Room 118

Time	ID	Accelerator Science and Technology Chair: Mike Seidel, PSI Villigen
44.00	004	
14:00	381	The P ³ Experiment: A Positron Source Demonstrator at PSI in 2025
		Nicolas Vallis ^{1,2} , Paolo Craievich ¹ , Mattia Schaer ¹ , Riccardo Zennaro ¹ ¹ PSI Villigen, ² EPFL
		The long-standing difficulty to handle the extreme e ⁺ emittance and energy spread generated at converter targets has been a major limiting factor for future large e ⁺ machine designs such as high-luminosity lepton colliders. The PSI Positron Production (P-cubed or P ³) experiment, framed in the FCC-ee study, is a demonstrator for a e ⁺ capture system with potential to improve the state-of-the-art e ⁺ yield by an order of magnitude. The experiment will be hosted at the SwissFEL facility at PSI as of 2025, where installation works are ongoing. This presentation is an overview of P ³ , with a particular focus on the novel capture system, e ⁺ beam dynamics and experiment diagnostics.
14:15	382	PSI CHART Superconducting Magnets Roadmap: from Powered Samples to Hybrid Magnets
		Douglas Martins Araujo ¹, Bernhard Auchmann ¹.², André Brem ¹, Michael Daly ¹, Thomas Michlmayr ¹, Dmitry Sotnikov ¹, Attilio Milanese ² ¹ PSI Villigen, ² CERN
		In the context of accelerator-magnet technology to enable a next generation of HEP colliders, many superconducting magnet solutions are being considered. These solutions include Low-temperature, High-temperature and hybrid magnets. At the Paul Scherrer Institute (PSI), we have been working on the design of stress-managed magnets, for example the successfully tested CCT magnet CD1, as a means to decrease Nb ₃ Sn coil stress and prevent its degradation. In order to bring meaningful innovation to our developments, the High-Field-Magnet Roadmap aims to allow a fast-turnaround and consistent development of LTS, HTS and Hybrid magnets. All elements composing this roadmap will be presented and in particular the status of each of its programs.
14:30	383	ReBCO High-Temperature Superconductors for Application in High Field Accelerator Magnets.
		Bernhard Auchmann ^{1,2} , Michal Duda ¹ , Henrique Garcia Rodrigues ¹ , Jaap Kosse ¹ , Douglas Martins Araujo ¹ , Attilio Milanese ² , Stephane Sanfilippo ¹ , Dmitry Sotnikov ¹ ¹ PSI Villigen, ² CERN
		High-temperature superconductors (HTS) promise a significant increase in performance of accel- erator magnets. This presentation examines challenges related to today's ReBCO tape conductor and lays out an R&D roadmap towards a consistent magnet technology for the FCC-hh's main dipole system in terms of cable- and coil configurations, cryogenic, mechanical, and protection concepts. Numerical modeling is accompanied by sample testing and the construction of sub-scale demonstrator coils and magnets. A first program goal is the identification of ramp-losses and ade- quate cooling concepts for a magnet based on optimized ReBCO-based cable.

14:45	384	High temperature superconducting magnets for FCC-ee
		Henrique Garcia Rodrigues ¹ , Jaap Kosse ¹ , Bernhard Auchmann ^{1,2} , M. Koratzinos ¹ , Michal Duda ¹ ¹ Paul Scherrer Institut, ² CERN
		High temperature superconductor (HTS) technology has attractive features for use in accelerator magnets. Two distinct benefits compared to low-temperature superconductors are the ability to operate at higher magnetic fields and/or at higher temperatures. We illustrate the advantages of HTS magnets by means of two potential use-cases for FCC-ee. The first concerns a compact defect-tolerant 15 T capture solenoid for FCC-ee's positron source. The second use-case investigates the possibility of replacing the normal conducting magnets in FCC-ee's short straight sections by HTS variants, allowing a reduction in energy consumption from ~ 50 MW to below 10 MW. Additional benefits are an increase in dipole filling-factor, and flexibility in the optics.
15:00	385	HTS FCC-ee energy efficient beam optics
		Cristobal Garcia, EPFL
		The FCC-ee project takes a step forward towards the discovery of new physical phenomena be- yond the frontier of the standard model, by aiming at unprecedented center of mass energies and luminosities in a double-ring lepton collider. In order to explore potential improvements to the current beam optics design,this work looks at the use of combined function magnets for the main dipoles and quadrupoles within the short straight sections of the arc cells to increase the bending radius, decreasing the synchrotron radiation(SR). The use of High Temperature Supercon- ductors(HTS) and normal conducting technology for the combined function magnets is explored with comparisons to the current baseline aiming for potential savings above 10 % of the SRpower.
15:15	386	Simulation Tools for Future Colliders
		Leon van Riesen-Haupt ¹, Tatiana Pieloni ¹, Xavier Buffat ², Riccardo De Maria ², Giovanni ladarola ², Peter Kicsiny ¹ ¹ EPF Lausanne, ² CERN
		As colliders become more complex, it is crucial to consider physical phenomena in simulations including complex effects such as radiation, beam-beam, and impedance. However, existing simulation tools are often outdated or focus on single aspects. To address this, the CHART collaboration is developing a software framework integrating existing tools and actively contributing to new simulation tools in collaboration with external colleagues. The project's main focus is the Future Circular Collider, for which the tools enable studies of beam stability, luminosity, and lifetime, incorporating multiple effects simultaneously. We will provide an overview of the collaboration's work on simulation tools and present beam dynamics studies for the FCC obtained using these tools.
15:30	387	Investigating LHC Electron Cloud Instabilities through Linearized Vlasov Method
		Sofia Carolina Johannesson ¹, Giovanni Iadarola ², Mike Seidel ³, Tatiana Pieloni ¹ ¹ EPFL, ² CERN, ³ PSI Villigen
		The Vlasov approach models e-cloud driven instabilities on time scales beyond conventional Par- ticle-In-Cell simulations. It uses a linear description of electron cloud forces that accounts for both the betatron tune modulation along the bunch and the dipolar kicks. Chromaticity effects can also be included. Benchmarked against macroparticle simulations using the same e-cloud force formal- ism, both methods agreed for strong electron clouds and experience a stabilizing effect from pos- itive chromaticity. This stabilizing effect is consistent with observations from the LHC. For positive chromaticity the Vlasov approach predicts weak instabilities not observed in the macroparticle sim- ulations, suggesting the existence of damping mechanisms not captured by the Vlasov approach.

15:45	388	LHC Schottky Spectrum from Macro-particle Simulations
		Christophe Lannoy ^{1,2} , Kacper Lasocha ² , Diogo Miguel Louro Alves ² , Nicolas Mounet ² , Tatiana Pieloni ¹ ¹ EPFL, ² CERN
		We introduce a method for computing Schottky spectra, which can be used for non-invasive beam diagnostics, from time-domain, macro-particle simulations. For LHC beam conditions the use of a standard Fast Fourier Transform (FFT) algorithm is computationally intractable memory-wise, hence a semi-analytical method was developed to efficiently handle the Fourier transform. Since Schottky spectra can be strongly affected by collective effects, thereby preventing the extraction of machine and beam parameters from the spectra, the use of macro-particle simulations where such effects can be included is well suited to study their impacts on the spectrum. Using this approach first results on the effect of a broad-band resonator as longitudinal impedance are obtained.
16:00	389	A muon beam of small phase space
		Giuseppe Lospalluto ¹ , Aldo Antognini ² , Malte Hildebrandt ² , Ryoto Iwai ¹ , Klaus Kirch ^{1,2} , Andreas Knecht ² , Patrick Mullan ¹ , Jonas Nuber ¹ , Angela Papa ² , Joanna Peszka ¹ , Claude Petitjean ² , Mikio Sakurai ¹ , David Taqqu, Bastiano Vitali, Taylor Yan ¹ ¹ ETH Zürich, ² Paul Scherrer Institut
		High precision experiments including the measurement of the muon g–2, muonium spectroscopy and muonium gravity would benefit from intense high-quality and low-energy muon beams. At the Paul Scherrer Institute, the muCool device is being developed to compress the phase space of a standard μ^{+} beam by a factor of 10 ⁹ with 10 ⁻⁴ efficiency. This is achieved with a cryogenic helium gas cell and complex E and B-fields. Once compressed, the beam is extracted from a small orifice into a vacuum and into a magnetic field free region. This talk will outline the present status and future prospects of the experiment with a special focus on the extraction stage.
16:15	390	Compact Synchrotrons for Hadron Therapy: Development and Synergies with HEP Projects.
		Elena Benedetto, SEEIIST Association (CH)
		Carbon-ion therapy has advantages over X-rays, because of the Bragg peak, and proton therapy, because of radio-biology properties that allow treating radio-resistant tumours. Accelerator development aims at size reduction: within EU-funded projects and CERN, we study a super-conducting synchrotron and a gantry, based on a concept of TERA Foundation. The super-conducting magnets, of CCT type, are strongly curved and require extensive R&D and new tools for beam-optics. Another development, with several beam-dynamics challenges, is accumulating 20-times larger intensity for FLASH irradiation, i.e. delivering high dose rates to spare healthy tissues. SEEIIST, federating SE-European countries, will implement these developments and build a medical facility, to foster collaboration and scientific excellence.
16:30		END; Coffee Break
19:30		Conference Dinner

Atomic Physics and Quantum Optics

Tuesday, 05.09.2023, Room 116

Time	ID	ATOMIC PHYSICS AND QUANTUM OPTICS I
Time	U	Chair: Jean-Philippe Brantut, EPFL
14:00	401	Ultra-low quantum decoherence nano-optomechanical systems
		Mohammad Bereyhi, EPFL
		Thermal motion of a room-temperature mechanical resonator typically dominates the quantum backaction of its position measurement. Optomechanics provides a path towards quantum control of the mechanical motion by dominating the thermal effects with optical backaction. In this work we design, fabricate, and characterize three different classes of nanomechanical resonators with Q factors exceeding 3 billion at room temperature and demonstrate their optical readout using an integrated nearfield nano-optomechanical transducer using high stress silicon nitride. Our approach allows individual optimization of optical and mechanical resonators, while maintaining a high optomechanical coupling rate.
14:30	402	Optical coherent feedback control of a mechanical oscillator
		Maryse Ernzer, Manel Bosch Aguilera, Matteo Brunelli, Gian-Luca Schmid, Thomas Karg, Christoph Bruder, Patrick P. Potts, Philipp Treutlein Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstr. 82, 4056 Basel We employ coherent feedback as strategy to improve quantum control of an optomechanical system, by implementing a feedback platform that avoids measurements and their associated decoherence. This is implemented via an optical light beam that sequentially interacts twice with a nanomechanical membrane placed inside an optical cavity. Theoretically this scheme allows for ground-state cooling even in the unresolved cavity sideband regime. Experimentally, tuning the optical phase and delay of the feedback improves our motional state control and allows to cool the membrane to a state with $n_m = 4.89 \pm 0.14$ phonons which lies below the theoretical limit of cavity dynamical backaction cooling in the unresolved sideband regime.
14:45	403	Photophysics of single NV centers in diamond and its application to electric field detection at cryogenic temperatures
		Jodok Happacher, Juanita Bocquel, Patrick Maletinsky, University of Basel
		We present the strain and magnetic field dependent photophysics of individual Nitrogen-Vacancy (NV) color centers in diamond from cryogenic to ambient conditions. Our experimental results and matching model predictions offer new insights into the structure of the NVs' excited states and its significant effect on the optical spin contrast, which directly relates to the performance of NV centers as quantum sensors. Based on the high sensitivity of the NV's orbital excited states to electric fields, we present a study of charge dynamics in the diamond host as well as a low-temperature, all optical electromagnetic field sensing scheme.

15:00	404	Integrated polariton condensate
		in silicon-on-insulator high contrast grating microcavities
		Pietro Tassan ¹, Darius Urbonas ¹, Bartos Chmielak ², Thorsten Wahlbrink ², Ullrich Scherf ³, Rainer Mahrt ¹, Thilo Stöferle ¹
		¹ IBM Research Europe, ² AMO GmbH, ³ Bergische Universität Wuppertal
		Integrated all-optical logic could define a new paradigm for computing architectures. Strong light-matter coupling based all-optical transistors exhibiting ultra-fast switching and room-temper- ature operation have recently been demonstrated using free-space optical setups. Here, we lever- age silicon-on-insulator (SOI) technology to realize high-index contrast grating (HCG) as mirrors to form microcavities filled with an organic polymer (MeLPPP) as photoactive material to demonstrate room temperature strong light-matter interaction and polariton condensation on chip. This opens the door to integrated all-optical transistors with the scalability to enable more complex optical logic circuits to operate at room temperature with sub-picosecond switching times.
15:15	405	Chiral sensing with void modes
		Diana Shakirova, Adrià Canós Valero, Thomas Weiss, University of Graz
		Chirality is a property of living organisms molecules, chemicals and drugs, which makes their detection and analysis an extremely important task in biology, chemistry, and pharmacology. One of the most well known methods for detecting chiral matter handedness is the measurement of circular dichroism (CD) that can be defined as the difference in the transmission of right- and left-handed circularly polarized light. In this work we present a system supporting bound state in the continuum and radiative void modes for CD enhancement. Different types of modes interaction, including weak coupling, strong coupling and exceptional point regimes are demonstrated, and the efficiency of each for chiral sensing is analyzed.
15:30	406	Polarimetric measurements of the bright triplet emission of single cesium lead halide perovskite quantum dots at cryogenic temperature
		Virginia Oddi ¹ , Michael Becker ¹ , Dmitry Dirin ^{2,3} , Maksym Kovalenko ^{2,3} , Rainer Mahrt ¹ , Gabriele Rainò ^{2,3} , Yesim Sahin ^{2,3} , Thilo Stöferle ¹ , Chenglian Zhu ^{2,3} ¹ IBM Research Europe – Zurich, Säumerstrasse 4, CH-8803 Rüschlikon ² Department of Chemistry and Applied Biosciences, ETH Zürich – Vladimir Prelog Weg 1, CH-8093 Zürich ³ Laboratory for Thin Films and Photovoltaics, Empa, CH-8600 Dübendorf
		Cesium lead halide perovskite quantum dots (QDs) have recently emerged as promising platform for quantum light sources. They exhibit exceptional photoluminescence properties due to the emission from a bright triplet exciton state with dominantly but not fully linear emission polarization. Here, we are investigating the polarization properties of individual cesium lead halide perovskite QDs by advanced polarimetric techniques that allow to measure the complete Stokes polarization vector at cryogenic temperature for each fine structure line. The presentation will discuss the characteristics of the small fraction of circularly polarized emission and its potential origin.
15:45	407	A Keldysh Path Integral Approach to Input-Output Theory
		Aaron Daniel, Matteo Brunelli, Patrick Potts, Universität Basel
		Input–output theory is a well–known tool in cavity electrodynamics and ubiquitous in the description of quantum systems interacting with the environment. We present a new approach to input–output theory using the Keldysh path integral formalism. This approach allows us to get perturbative results for non–linear systems. We apply this novel approach to a single mode in a cavity solvable through standard input–output theory and then treat a Kerr oscillator to showcase the specific strength of our approach to yield perturbative results.

16:00	408	Exploring molecular properties using far-field matter-wave diffraction
		Ksenija Simonović ¹ , Markus Arndt ¹ , Christian Brand ² , Alfredo Di Silvestro ³ , Richard Ferstl ¹ , Klaus Hornberger ⁴ , Lukas Martinetz ⁴ , Marcel Mayor ³ , Armin Shayeghi ⁵ , Benjamin Stickler ⁴ ¹ University of Vienna, Faculty of Physics, ² Deutsches Zentrum für Luft- und Raumfahrt (DLR) ³ Department of Chemistry, University of Basel, ⁴ University of Duisburg-Essen ⁵ Institute for Quantum Optics and Quantum Information - IQOQI Vienna, Austrian Academy of Sciences We report on first single-grating diffraction of molecular matter-waves at a continuous 266 nm
		optical grating. While pulsed UV gratings are already used in molecular interferometry, continuous ones have so far been hindered by lack of high-power lasers and fast degradation of UV optics in vacuum. Our focus is on applications for quantum-assisted measurements of molecular electronic properties, such as polarizabilities and absorption cross-sections at 266 nm. The deep UV diffraction grating paves the way for studying photophysical and photochemical processes of biologically and technologically relevant molecules in matter-wave diffraction. Furthermore, it explores new grating mechanisms for interferometry of complex biomolecules, such as depletion gratings based on single photon-induced photocleavage.
16:15	409	Cavity-mediated coupling of terahertz antiferromagnetic resonances in distant crystals
		Marcin Bialek, Jean-Philippe Ansermet, EPFL
		In the regime of strong light-matter coupling, polaritons are formed that are hybrids of a cavity mode and a matter excitation. Recently, magnon-polaritons were researched using ferromagnets in the microwave range. Exploring antiferromagnets rises magnon-polariton frequencies into the terahertz range. We report on coupling of antiferromagnetic resonance (AFMR) in two parallelplane crystals of hematite (alpha-Fe ₂ O ₃) placed at a well controlled gap, forming a tunable Fabry-Perot cavity. Frequency of AFMR in each crystal was independently controlled by changing their temperatures. Reflection spectra in the range 0.2 - 0.3 THz, collected as a function of temperature difference between the two crystals, show avoided crossings of AFMR from both slabs mediated by Fabry-Perot cavity modes.
16:30		Coffee Break
		Atomic Physics and Quantum Optics II Chair: Tilman Zibold, Universität Basel
17:00	411	Minimalistic efficient quantum devices build of dipole coupled nano arrays of quantum emitters
		Helmut Ritsch, Universität Innsbruck
		An array of closely spaced, dipole coupled quantum emitters exhibits collective energy shifts as well as super- and sub-radiance with characteristic tailorable spatial radiation patterns. As striking example we identify a sub-wavelength sized ring of exactly 9 identical dipoles with an extra identical emitter with a extra loss channel at the center as the most efficient configuration to deposit incoming photon energy to center without reemission. For very tiny structures below a tenth of a wavelength a full quantum description exhibits an even larger enhancement than predicted from a classical dipole approximation. Adding gain to such systems allows to design minimalistic classical as well as non-classical light sources.

17:30	412	Cavity-QED Quantum Simulator of Random Spin Models
		Francesca Orsi, Rohit Bhatt, Gaia Bolognini, Jean-Philippe Brantut, Jonas Faltinath, Nick Sauerwein, EPFL
		Cavity QED systems have proved valuable for quantum simulations, specifically for the long-range interactions that the cavity field mediates between the atoms. We have realized a random spin model with atoms in a cavity where we introduce controlled disorder in the the atomic transition frequencies with a light-shift of the excited state. We study the competition between the collective many-body physics and the disorder. In the dispersive regime, we observe the ferromagnetic gap of our system closing as a function of the disorder strength. I will also discuss how we plan to use a modulation of our light-shifting beam to locally control the atom-cavity coupling and tailor the long-range interactions.
17:45	413	Entanglement-induced collective multiparticle interference
		Tommaso Faleo ¹ , Eric Brunner ² , Jonathan W. Webb ³ , Christoph Dittel ² , Gregor Weihs ¹ , Gabriel Dufour ² , Alessandro Fedrizzi ³ , Robert Keil ¹ ¹ University of Innsbruck, ² University of Freiburg, ³ Heriot-Watt University
		Multiparticle interference phenomena have been crucial to the understanding of quantum physics. In two-particle systems, Hong, Ou, and Mandel showed how particles' indistinguishability forbids retrieving information about the pairwise exchange process, playing a key role in witnessing interference. Contrarily, in systems of N \geq 3 partially distinguishable particles, multiple interference terms originate from the different exchange processes, enabling the observation of genuine N-particle interference that is no longer fully determined by pairwise indistinguishability. Here, we introduce yet another fundamental feature of quantum physics, i.e., quantum entanglement, to demonstrate the genuine four-particle interference of photons which, however, only interfere in pairs at two separate and independent beamsplitters, thus suggesting a nonlocal collective interference.
18:00	414	Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates
		Paolo Colciaghi, Yifan Li, Philipp Treutlein, Tilman Zibold Department of Physics, University of Basel, CH-4056 Basel
		We observe for the first time the famous Einstein-Podolsky-Rosen (EPR) paradox with two spa- tially separated, massive many-particle systems. We split a spin-squeezed Bose-Einstein conden- sate into two spatially separated parts, on which we perform independent spin measurements to demonstrate the paradox. Our results show that the conflict between quantum mechanics and the classical understanding of locality and realism does not disappear as the system size is increased to over 1000 massive particles. Furthermore, we demonstrate the individual control of both sys- tems on the quantum level, which is a necessary condition to exploit EPR entanglement as a resource for quantum technology.
18:15	415	The Wave-Particle Duality in Quantum Heat Engine
		Marcelo Janovitch Broinizi Pereira, Matteo Brunelli, Patrick Potts, Universität Basel
		According to the wave-particle duality (WPD), quantum systems show both particle- and wave-like behavior, and cannot be described using only one of these classical concepts. The WPD implies that comparison to one classical model is generally insufficient; one wave and one particle model should be considered. We exploit this insight, contrasting a bosonic quantum heat engine with particle and wave counterparts. While both classical models reproduce the average output power of the quantum engine, neither reproduces its fluctuations. We find regimes where wave and particle descriptions agree with the quantum, and a regime where neither classical model is adequate, revealing the role of the WPD in non-equilibrium bosonic transport.

18:30	416	Verification of the area law of mutual information in a quantum field simulator
		Mohammadamin Tajik ¹ , Ivan Kukuljan, Spyros Sotiriadis ² , Bernhard Rauer ¹ , Thomas Schweigler ¹ , Federica Cataldini ¹ , João Sabino ¹ , Frederik Møller ¹ , Philipp Schüttelkopf ¹ , Si-Cong Ji ¹ , Dries Sels ³ , Eugene Demler ⁴ , Jörg Schmiedmayer ¹ ¹ TU Wien, ² FU Berlin, ³ New York University, ⁴ ETH Zürich
		Understanding scaling laws of entropies and mutual information has benefited studying correlated states of matter, quantum field theory, and gravity. Measuring von Neumann entropy experimentally in quantum many-body systems is challenging. In my talk, I will present our measurements of von Neumann entropy of subsystems in an ultracold atom simulator of Klein-Gordon field theory, verifying a foundational property of equilibrium states of gapped quantum many-body systems - the area law of quantum mutual information (Tajik, M. et al. Nat. Phys. 2023). I will also discuss the effect of temperature and subsystem separation on mutual information. Finally, I will address the challenges of measuring entanglement in many-body systems.
18:45	417	Positron manipulation and control at ASACUSA
		Daniel James Murtagh, Austrian Academy of Sciences
		The ASACUSA-Cusp experiment aims to perform spectroscopy of the hyperfine structure of an- ti-hydrogen by producing a beam of cold, spin polarised, ground state antihydrogen. Recently, a major technological milestone was achieved by the collaboration. Previously, it has not been possible to cool plasma below 130 K, however, a new electrode stack and coldbore with a focus on blocking microwaves from the room temperature region has allowed particles to cool to 25 K maintaining the large open solid angle for the beam to escape. In this presentation I will discuss the methods used by the ASACUSA Cusp experiment to manipu- late and control positrons and give details on the most recent work
19:00		END; Postersession with Apéro

ID	ATOMIC PHYSICS AND QUANTUM OPTICS POSTER
431	Laser cooling and shuttling of trapped ions in strongly inhomogeneous magnetic fields
	Christian Mangeng, Richard Karl, Stefan Willitsch, Yanning Yin, University of Basel
	We demonstrate laser-cooling of Ca ⁺ ions confined in a segmented linear Paul trap and in presence of a strongly inhomogeneous magnetic field. We show that by employing two cooling lasers with properly adjusted wavelengths and polarizations, the trapped ions can efficiently be cooled to millikelvin temperatures despite strong position-dependent Zeeman shifts. The experimental results are complemented by a theoretical analysis. We further demonstrate successful shuttling of the ions through these magnetic field gradients. These experiments pave the way for studying cold collisions and reactions between ions and neutral molecules in hybrid traps composed of a Paul trap and a magnetic trap.
432	Coupling a mechanical Oscillator to single trapped lons
	Moritz Weegen, Panagiotis Fountas, Martino Poggio, Stefan Willitsch, University of Basel
	Ultracold ions in linear radiofrequency traps are well-established and highly controllable quantum systems with a variety of applications in the quantum sciences. The combination with a charged nanomechanical oscillator may offer novel ways for state preparation and readout by coupling both systems within a single guantum device.
	Here we demonstrate the transfer of energy from a mechanically driven oscillator to the motion of trapped ions in a classical regime. This is obtained by coupling one of the oscillator mechanical modes to the ion mo- tion of matching frequency. We further characterise the interaction by varying different defining parameters such as the mechanical drive amplitude and the effective charge on the oscillator.

433	Precision spectroscopy and coherent manipulation of single trapped nitrogen molecules
	Mikolaj Franciszek Roguski, Aleksandr Shlykov, Richard Karl, Prerna Paliwal, Mudit Sinhal, Stefan Willitsch, University of Basel
	Complex energy-level structure of molecules with rotational and vibrational degrees of freedom provides transitions with various properties but also presents challenges toward molecular state initialization, manipulation, and readout. We followed a quantum-logic protocol that uses a single co-trapped atomic ion as a probe for the molecular state, and demonstrated a quantum non-demolition state detection with fidelities > 99 %. Currently, we are implementing precision-spectroscopic measurements on a narrow infrared quadrupole transition referenced to the Swiss primary frequency standard at METAS in Berne. The present method paves the way for the implementation of molecular qubits, for establishing new frequency standards in the mid-IR regime, and for investigating state-to-state dynamics of chemical reactions.
434	Towards quantum control of polyatomic molecular ions
	Mikhail Popov, Prerna Paliwal, Stefan Willitsch, University of Basel
	Complete control over the quantum state of single molecules possesses significant challenges due to the complexity of their energy level structure and was demonstrated only recently for diatomic molecular ions. We report on the progress of a generalization of a quantum control scheme that employs quantum logic spectroscopy with a co-trapped atomic ion of calcium to polyatomic molecules. This will open the possibility of studying chemical reactions and ultracold collisions on a state-to-state level and conducting precision spectroscopy with polyatomic species.
435	Towards OH-ion reaction studies at astrochemically relevant conditions
	Pietro Vahramian, Dominik Haas, Claudio von Planta, Yanning Yin, Dongdong Zhang, Thomas Kierspel, Stefan Willitsch, University of Basel
	In interstellar space, reactions involving neutral dipolar molecules and ions are the main mechanism with which new molecules are formed, yet there is sparse data about reactivities in this range. Here we present an experiment aimed at studying radical-ion reactivities at conditions relevant for astrochemistry – high vacuum and temperatures down to few Kelvins. A Stark decelerator slows down to temperatures of a few K a beam of radicals, which are then shot onto trapped, laser cooled Ca ⁺ ions. I will report on advancements on the deceleration and detection of the OH molecules and on prospects to couple them to the trapped ion.
436	Investigation of the dipole moment of 6,11-dihydroxy-5,12-naphthacenedione
	using molecular diffraction
	Richard Ferstl ¹ , Markus Arndt ¹ , Anders Barlow ² , Christian Brand ³ , Armin Shayeghi ⁴ , Ksenija Simonovic ¹ ¹ University of Vienna, Faculty of Physics
	² University of Melbourne, Faculty of Engineering and Information Technology ³ Deutsches Zentrum f ür Luft- und Raumfahrt (DLR)
	⁴ Institute for Quantum Optics and Quantum Information - IQOQI Vienna, Austrian Academy of Sciences
	Permanent electric dipole moments have been found to significantly reduce the interference contrast in molecular diffraction experiments at nanomechanical gratings. Dephasing caused by the interactions with implanted charges in the nanogratings has been presented as a possible explanation for this behavior. Here we investigate the polarity of 6,11-dihydroxy-5,12-naphthacenedione, which could be assumed to be polar by its lack of inversion symmetry, yet shows a surprisingly high interference contrast. This may suggest a reduction of the electric dipole moment, attributed to coherent or fast incoherent proton transfer between adjacent functional groups. We will report on the comparison of these results with diffraction of molecules that are known to be polar.

407	Observe and a single stitution in the state of the limit is a strength interview. If the
437	Charge and pair density waves induced by light in a strongly interacting Fermi gas
	Tabea Nelly Clara Bühler ¹ , Timo Zwettler ¹ , Giulia Del Pace ² , Jean-Philippe Brantut ¹ ¹ Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, CH-1015 Lausanne ² Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) and European Laboratory for Nonlinear Spectroscopy (LENS), University of Florence, IT-50019 Sesto Fiorentino
	Quantum gas experiments provide the unique opportunity to study complex quantum many-body systems. Starting from a dilute gas non-local, all-to-all interactions can be implemented by means of a high-finesse optical cavity.
	In our experiment we prepare a degenerate, strongly interacting Fermi gas of ⁶ Li atoms trapped inside a high-finesse optical cavity. We induce long-range atom-atom, atom-pair and pair-to-pair interactions me- diated by cavity photons. We observe a density-wave ordering phase transition in the presence of these interactions, suggesting a pair-density-wave state of the gas. We characterize the transition threshold and the lifetime of this state as we vary the strength and sign of the long-range interactions.
438	Levitated optomechanics in ultra-high vacuum
	Florian Goschin, University of Innsbruck
	We envision preparing mesoscopic motional quantum states by coupling the motion of a levitated particle to a trapped ion qubit. First, we levitate a charged silica nanoparticle in a Paul trap in ultra-high vacuum resulting in an ultra-high
	quality factor (Q = $1.6(4) \times 10^{10}$) of mechanical oscillations. Second, we control the particle's center-of-mass motion by applying measurement-based active feedback cooling. To increase the particle detection efficiency we implement a detection method based on self-interference of the particle with its image.
	Finally, we introduce the trapped ion qubit into the system. For the first time, we experimentally realize the simultaneous trapping of a single ion and a nanoparticle in the same Paul trap.
439	The Scalar Magnetometer on board ESA's JUICE Mission and its Potential as a Vector Magnetometer
	Christoph Amtmann ¹ , Martín Agú ² , Alexander Betzler ² , Irmgard Jernej ² , Sunny Laddha ¹ , Roland Lammegger ¹ , Werner Magnes ² , Andreas Pollinger ¹ ¹ Institute of Experimental Physics, Graz University of Technology ² Space Research Institute, Austrian Academy of Sciences
	The scalar magnetometer on board ESA's JUICE mission is an optically pumped magnetometer, based on the coherent population trapping (CPT) effect in the atomic vapour of the rubidium isotope 87. The CPT effect is a quantum mechanical interference effect which allows the precise detection of the external magnetic field strength by measuring the so-called Zeeman shifts. The instrument excites and couples several CPT resonances to enable a measurement principle which is inherently drift and dead-zone free. The presentation will give an overview of the scalar magnetometer for the JUICE mission as well as the first results of its potential for vector measurements.

Gravitational Waves

Tuesday, 05.09.2023, Room 117

Time	ID	GRAVITATIONAL WAVES I
		Chair: Steven Schramm, Université de Genève
14:00	481	Searching for generic gravitational waves transients in LIGO-Virgo-KAGRA
		Shubhanshu Tiwari, University of Zürich
		Routine detections of gravitational waves by the LIGO-Virgo-KAGRA collaboration has put the gravitational waves astronomy on a firm path. In this development of gravitational waves astronomy morphology independent algorithms have played a key role, from the first detection of GW150914 to the recent detection of first intermediate mass black hole merger GW190521. In this talk I will outline the capabilities, limitations and opportunities presented by the morphology independent searches. I will also discuss various applications of such searches for the case of compact binary mergers and other sources as well like Neutron Star glitches, non-linear memory etc.
14:20	482	The minimum detectable eccentricity in gravitational waves from LISA massive black hole binaries
		Mudit Garg, Shubhanshu Tiwari, Andrea Derdzinski, Lucio Mayer, University of Zürich
		We explore the eccentricity detection threshold of the future space-based mission LISA for gravitational waves (GWs) radiated by massive black hole binaries (MBHBs) with BH masses in the range $10^4 - 10^8$ M _☉ at redshift z = 1. We will generate mock high-order post-Newtonian eccentric waveforms, project them in LISA arms to perform time delay interferometry to cancel laser noise, and use both Fisher and Bayesian inference via MCMC to see how well we can constrain injected parameters as a function of the waveform's signal-to-noise ratio. This study is much needed as eccentricity can be a unique tracer of the environment where these MBHBs evolve to reach the merger phase in the LISA band.
14:40	483	Double Neutron-Star Binaries
		Matthias Kruckow, Uni Genève
		Neutron stars, the final fate of massive stars, are mostly observed as radio pulsars in the Milky Way. Two of them in a binary system allow very precise measurements of the orbits, which caused the first (indirect) detection of gravitational-wave emission. The first observation of a merger of two neutron stars by their gravitational-wave radiation with the ground based gravitational-wave detectors got jointly observed in the electromagnetic spectrum as kilonova and gamma-ray burst. This mile-stone event (and further detections) lead to the question, whether there are differences between the galactic and extra galactic double neutron-star binaries.
15:00	484	Role of Non-Linear Memory in Resolving Distance-Inclination Degeneracy in Ground-Based Gravitational Wave Detectors: Present and Future
		Yumeng Xu ¹ , Michael Ebersold ² , Shubhanshu Tiwari ¹ ¹ University of Zürich, ² Laboratoire d'Annecy de Physique des Particules
		Gravitational wave detection is a powerful tool that provides us with new ways to understand the universe. However, certain parameters, such as inclination and distance, are degenerate. This limitation hinders our ability to accurately measure other important factors like precession. Break- ing the degeneracy between inclination and distance can also give us new insights into formation channels and cosmology. The memory effect, a unique characteristic of gravitational waves, can aid in breaking this degeneracy, especially in symmetric mass systems. In this work, we conducted a Parameter Estimation study to investigate the memory effect and its potential to enhance our interpretation of gravitational wave signals.

15:20	485	Accelerating global parameter estimation of gravitational waves from Galactic binaries using a genetic algorithm and GPUs
		Stefan Strub, Cedric Schmelzbach, Luigi Ferraioli, Simon Stähler, Domenico Giardini, ETH Zürich
		The Laser Interferometer Space Antenna (LISA) is aimed to measure gravitational waves in the mili-Hertz frequency band, which is dominated by millions of Galactic binaries. While some of these binaries produce signals that are extractable, most of them blur into a confusion foreground. We introduce a new approach to extract the best-fitting solutions for Galactic binaries across the entire frequency band from data with multiple overlapping signals. Furthermore, we use these best-fitting solutions to omit the burn-in stage and to take full advantage of GPU-accelerated signal simulation, allowing us to compute posterior distributions in just 2.3 seconds per signal on a laptop-grade GPU.
15:40	486	Singling out SO(10) GUT models using recent PTA results
		Shaikh Saad, Universität Basel
		In this work, we construct promising model building routes towards SO(10) GUT inflation and ex- amine their ability to explain the recent PTA results hinting at a stochastic gravitational wave (GW) background at nanohertz frequencies. We consider a supersymmetric framework within which the so-called doublet-triplet splitting problem is solved without introducing fine-tuning. Additionally, re- alistic fermion masses and mixings, gauge coupling unification, and cosmic inflation are incorpo- rated by utilizing superfields with representations no higher than the adjoint representation. Among the three possible scenarios, two of these cases require a single adjoint Higgs field, and do not lead to cosmic strings. In contrast, the third scenario featuring two adjoints, can lead to a network of metastable cosmic strings that generates a GW background contribution compatible with the recent PTA findings and testable by various ongoing and upcoming GW observatories.
16:00		
10.00		
16:30		Coffee Break
		GRAVITATIONAL WAVES II
16:30	401	GRAVITATIONAL WAVES II Chair: Philippe Jetzer, Universität Zürich
	491	GRAVITATIONAL WAVES II Chair: Philippe Jetzer, Universität Zürich Unraveling the origins of stellar-mass black hole mergers
16:30	491	GRAVITATIONAL WAVES II Chair: Philippe Jetzer, Universität Zürich
16:30	491	GRAVITATIONAL WAVES II Chair: Philippe Jetzer, Universität Zürich Unraveling the origins of stellar-mass black hole mergers
16:30	491	GRAVITATIONAL WAVES II Chair: Philippe Jetzer, Universität Zürich Unraveling the origins of stellar-mass black hole mergers Simone Bavera, University of Geneva The LIGO and Virgo gravitational-wave detectors have observed a sample of around 90 merging binary black holes. However, to date, their formation origins remain a mystery. In my presentation, I will briefly review current theoretical predictions regarding the astrophysical formation channels of merging binary black holes and their model predictions. These models leverage binary black holes, such as the black hole masses, spins, and redshifts of the merger. Finally, leveraging the observed sample, I will demonstrate how one can use Bayesian hierarchical model selection to
16:30		GRAVITATIONAL WAVES II Chair: Philippe Jetzer, Universität Zürich Unraveling the origins of stellar-mass black hole mergers Simone Bavera, University of Geneva The LIGO and Virgo gravitational-wave detectors have observed a sample of around 90 merging binary black holes. However, to date, their formation origins remain a mystery. In my presentation, I will briefly review current theoretical predictions regarding the astrophysical formation channels of merging binary black holes and their model predictions. These models leverage binary population synthesis techniques to make predictions of the observable properties of merging binary black holes, such as the black hole masses, spins, and redshifts of the merger. Finally, leveraging the observed sample, I will demonstrate how one can use Bayesian hierarchical model selection to constrain the formation origins of merging binary black holes.

17:40	493	The windowed Fast Galactic Binary algorithm: a fast and accurate method to simulate the LISA response to Galactic Binaries
		Franziska Riegger, Fredrik Andersson, Johan Robertsson, ETH Zürich
		The Fast Galactic Binary (FGB) method is an algorithm to simulate the LISA response to galactic binaries, which are expected to emit most of the gravitational waves detected by LISA. This algorithm operates in the time and frequency domains. However, the standard algorithm generates waveforms that exhibit artifacts, yielding notable approximation errors. These artifacts are due to discontinuity effects introduced when moving between the domains. We present a new modified FGB algorithm where these artifacts are eliminated and which allows for simulating more complex detector geometries. The proposed algorithm is well-suited for GPU implementations, and several tens of millions of events are accurately evaluated in seconds on a desktop computer.
18:00	494	Detailed Binary Population Synthesis Study of Merging Black Hole Neutron Star Binaries at Solar Metallicity
		Zepei Xing, Jeff Andrews, Simone Bavera, Aaron Dotter, Tassos Fragos, Konstantinos Kovlakas, Devina Misra, Kyle Rocha, Philipp Srivastava, Meng Sun, Emmanouil Zapartas Université de Genève
		Neutron star – black hole (NSBH) merger events bring us new opportunities to constrain theories of stellar and binary evolution and to understand the nature of compact objects. In this work, we investigate the formation of merging NSBH binaries at solar metallicity by performing a binary population synthesis (BPS) study with the new BPS code POSYDON, which incorporates extensive grids of detailed single and binary evolution models, covering the entire evolution of a double compact object progenitor. We explore the evolutionary paths of individual NSBHs originating from different formation channels. Then, we present the population properties and discuss the possibilities of associated electromagnetic counterparts.
18:20	495	New methodologies to generate waveforms from a scattering amplitude approach
		Lara Bohnenblust, Uni Zürich
		The next generation of gravitational wave detectors will require precise waveform templates for binaries with high mass ratios and eccentricities. One tantalizing method is the post-Minkowskian (PM) expansion. Using tools from particle physics the scattering angle and a conservative potential have been found up to 4th order in G. We discuss two methods to generate waveforms using the PM expansion. The first formalism is based on quantum observables where one can extract the full waveform directly from the scattering amplitudes. The second method makes use of the resummation into an effective one body potential and the mode expansion.
18:40		END
19:00		Postersession with Apéro

New prospects in ARPES for quantum materials

Tuesday, 05.09.2023, Room 115

Time	ID	New prospects in ARPES for quantum materials I Chair: Felix Baumberger, Université de Genève
14:00	501	2D with a twist
		Neil Wilson, Department of Physics, University of Warwick, UK
		A new parameter space to explore has been added to the beautiful world of 2D materials (2DMs); the twist angle between neighbouring layers. This is exemplified by 'magic-angle' twisted graphene, engineering strongly correlated behaviour through moire interactions, an effect also used to trap ordered arrays of excitons in transition metal dichalcogenide (TMDC) heterobilayers. Moire effects conventionally require a moire wavelength much longer than the atomic scale. But for larger lattice mismatch, Umklapp processes can result in unexpected electronic structure changes. Here, I will present our recent studies of twisted 2DMs, including twisted graphenes and TMDCs. I will discuss initial-state and final-state effects, and the twist-angle dependence of inter-layer interactions.
14:30	502	Different electronic phases on the surface of bulk 1T-TaSe $_{\rm 2}$
		Michael Straub, Yann Alexanian, Gianmarco Gatti, Catherine Witteveen, Fabian von Rohr, Felix Baumberger, Anna Tamai, Université de Genève
		Recent STM experiments revealed a variety of different correlated states to coexist on the surface of bulk 1T-TaSe ₂ . The different regions have the same in-plane charge density wave ordering, yet range from insulating to strongly correlated metal. By utilizing microfocus ARPES, we have resolved the quasiparticle dispersion in the different spatial domains. In the metallic regions, we found heavy quasi-particles forming a chiral Fermi surface, whereas, in the insulating domains our measurements are consistent with a band insulator. We will discuss the origin of this spatial inhomogeneity in terms of the interplay between electron-electron interactions and interlayer coupling.
14:45	503	Observing Electronic Band Structure of Antiferromagnetic Phase in Topological Weyl Semimetal Co ₃ Sn ₂ S ₂
		Sandy Adhitia Ekahana ¹ , Felix Baumberger ² , Dariusz Jakub Gawryluk ¹ , Satoshi Okamoto ³ , Loic Roduit ¹ , Yona Soh ¹ , Anna Tamai ² ¹ Paul Scherrer Institute, ² Université de Genève, ³ Oak Ridge National Laboratotry Co ₃ Sn ₂ S ₂ has been reported to be a magnetic Weyl semimetal expanding our understanding of topological materials. This material is considered to be ferromagnetic as demonstrated experi- mentally and also by DFT calculations. However, recent muon measurement suggests a co-ex- istence of antiferromagnetism and ferromagnetism around the magnetic transition temperature, which has been neglected previously in the discussion of Co ₃ Sn ₂ S ₂ . In this talk, we present our micro-ARPES measurement revealing the presence of an antiferromagnetic phase co-existing as a minority phase with the majority ferromagnetic phase. We confirm the magnetic nature of the phase by studying the temperature dependence of the electron band. Our result provides the first spatial visualization of the aforementioned co-existence.
15:00	504	First micro-ARPES measurements of encapsulated monolayer Td-MoTe ₂
		Julia Issing, Ignacio Gutiérrez-Lezama, Fabian von Rohr, Alberto Morpurgo, Anna Tamai, Felix Baumberger, University of Geneva
		Bulk orthorhombic Td-MoTe ₂ is a type-II Weyl semimetal with topological Fermi arc surface states and becomes superconducting at a critical temperature of T _c = 0.1 K. Remarkably, superconductiv- ity becomes far more robust in the 2D limit, contrary to generic models and the established trend in ultrathin metal films. Recent transport measurements reported an increase in T _c for decreasing thickness with T _c reaching 7.6 K in the monolayer. The reasons for the strong increase in T _c as well as the nature of the superconducting state remain unknown. To address the opened questions, we will present the electronic structure of exfoliated monolayer MoTe ₂ encapsulated between graphite and graphene probed by micro-focused ARPES.

15:15	505	Strain tuning the band structure in a charge-order Kagome system
		Chun Lin ¹ , Julia Küspert ¹ , Armando Consiglio ² , Ola Forslund ¹ , Wojciech Pudelko ³ , M. Michael Denner ¹ , Hechang Lei ⁴ , Youguo Shi ⁵ , Zurab Guguchia ³ , Qisi Wang ¹ , Gerardina Carbone ⁶ , Mats Leandersson ⁶ , Craig Polley ⁶ , Balasubramanian Thiagarajan ⁶ , Alex Louat ⁷ , Matthew Watson ⁷ , Timur Kim ⁷ , Cephise Cacho ⁷ , Giorgio Sangiovanni ² , Titus Neupert ¹ , Johan Chang ¹ ¹ University of Zurich, ² University of Würzburg, ³ Paul Scherrer Institut, ⁴ Renmin University of China, ⁵ Chinese Academy of Sciences, ⁶ MAX IV Laboratory ⁷ Diamond Light Source
		Kagome-lattice investigations are growing vigorously owing to the simultaneous realisation of topologically non-trivial electronic structure including Dirac fermions, flat bands, and Van Hove singularities (VHS). As an effective external stimulus, uniaxial strain manifested in a form of physical pressure, is playing an increasingly important role in engineering the band structure and hence physical properties of quantum materials. Utilising high-resolution ARPES, we have successfully applied uniaxial strain and tuned the energy gaps as well as the VHSs in the charge-order state of a Kagome superconductor CsV_3Sb_5 .
15:30	506	Photoemission Orbital Tomography for Pump-probe Photoelectron Spectroscopy
		Christian S. Kern, Andreas Windischbacher, Peter Puschnig, University of Graz
		In order to interpret and simulate recent time- and angular-resolved photoemission spectrosco- py (tr-ARPES), we extend the successful method of photoemission orbital tomography (POT) to excited states. Our theory retains the intuitive orbital picture of POT, while respecting both the entangled character of the electron-hole exciton wave function and the energy conservation in the photoemission process. Going beyond simple HOMO-LUMO transitions in organic molecules, we classify generic exciton structures and give an intuitive interpretation of tr-ARPES data in terms of natural transition orbitals. It is further shown how this new method for excited-states POT can be independently validated by real-time simulations of tr-ARPES from time-dependent density func- tional theory.
15:45	507	Circular Dichroism and Orbital Angular Momentum in chiral Weyl semimetals PdGa/PtGa
		 Yun Yen ^{1,2}, Jonas A. Krieger ³, Niels B. M. Schröter ³, Maia G. Vergniory ⁴, Iñigo Robredo ⁵, Michael Schüler ^{1,6}, Qun Yang ⁷, Mengyu Yao ⁵ ¹ Paul Scherrer Institute, ² EPFL, ³ Max Planck Institute of Microstructure Physics ⁴ Donostia International Physics Center, ⁵ Max Planck Institute for Chemical Physics of Solids ⁶ Department of Physics, University of Fribourg, ⁷ Weizmann Institute of Science
		In this work, we show that circular dichroism angle resolved photoemission spectroscopy (CD-ARPES) can map topology in chiral Weyl semimetals PdGa/PtGa, where multifold nodes host large Chern number. We successfully simulate the CD intensity using our in-house code dynamics- w90. The correspondence between local OAM and dipole matrix elements depends on orbital characters and experimental geometry. Pd/Pt local OAM can be measured by CD, where d orbital contribution is dominated by $m = \pm 2$ complex orbitals. Although the total CD signal consists of interatomic interference terms, they still exhibit radial structure. We conclude that one can see the reminiscence of radial OAM structure, which comes from the topological nature of the Weyl nodes.
16:00	508	Band topology induced by strain in SrNbO ₃
		Victor Rosendal ² , Alla Chikina ¹ , Hang Li ¹ , Mads Brandbyge ³ , Eduardo Bonini Guedes ¹ , Marco Caputo ¹ , Dirch Hjorth Petersen ² , Felix Baumberger ⁴ , Milan Radovic ¹ , Nini Pryds ³ ¹ Paul Scherrer Institute ² Department of Energy Conversion and Storage, Technical University of Denmark ³ Department of Physics, Technical University of Denmark ⁴ University of Geneva
		Transition metal oxides could also be a platform for conceiving novel quantum properties, such as nontrivial topology induced by crystal structure modification. In this study, we investigate the effect of strain on the electronic structure and band topology of ultra-thin SrNbO ₃ films. By employing angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT)

16:15	509	calculations, we gain insight into band structure of SrNbO ₃ strained tetragonal phases. We will discuss a formation of nontrivial Dirac band crossings in SrNbO ₃ films originating from in-phase and out-of phase octahedral tilting. Our study provides direct evidence and proves that heteroepitaxial strain can be effectively used for engineering quantum phases in transition metal oxides. Photoemission matrix element correction for accurate quantification of electronic spectral functions: the case of TiO ₂ -terminated SrTiO ₃ Tom van Waas ¹ , Igor Sokolovic ² , Martin Setvín ² , Eduardo Bonini Guedes ³ , Hugo Dil ⁴ , Samuel Poncé ¹ ¹ Université catholique de Louvain, ² TU Vienna, ³ PSI Villigen, ⁴ EPFL In ARPES, access to the electronic spectral function $A(E, \mathbf{k})$ is obscured by the photoemission matrix elements $M_{k,k}$. We provide a heuristic approach based on the sum rule to obtain the momentum dependence of these elements. We show how matrix element correction (MEC) enables
		extraction of the Eliashberg spectral function from both light band branches of a TiO ₂ -terminated SrTiO ₃ surface state. Finally, we illustrate how the MEC allows for direct comparison of $A(E, \mathbf{k})$ from ARPES and first principles.
16:30		Coffee Break
		New prospects in ARPES for quantum materials II Chair: Claude Monney, Université de Fribourg
17:00	511	ARPES of quantum confined semiconductor and topological insulator heterostructures grown by molecular beam epitaxy <i>Gunther Springholz, Johannes Kepler Universität, Linz</i> Angle resolved photoemission spectroscopy (APRES) has emerged as a powerful tool to assess the electronic band structure of quantum materials. Here, it is applied to study quantum confined states in IV-VI semiconductor and topological insulator heterostructures produced by molecular beam epitaxy. This allows to study a large variety of low dimensional structures revealing the electronic spectra with high resolution, as is exemplified for zero gap Dirac quantum wells, double quantum wells, as well as Volkov-Pankratov heterojunctions. We reveal the significant probing depth of APRES stemming from the emergent wave functions, which opens up a new realm for ARPES applications.
17:30	512	 Persistent Rashba splitting in the bulk bands of SnTe in the paraelectric phase Frédéric Chassot ¹, Aki Pulkkinen ², Geoffroy Kremer ³, Hugo Dil ⁴, Juraj Krempasky ⁵, Ján Minár ², Gunther Springholz ⁶, Claude Monney ¹ ¹ Department of Physics and Fribourg Center for Nanomaterials, Université de Fribourg, CH-1700 Fribourg ² New Technologies-Research Center, University of West Bohemia, Plzeň, Czech Republic ³ Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, Nancy, France ⁴ Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne ⁵ Photon Science Division, Paul Scherrer Institut, CH-5232 Villigen PSI ⁶ Institut für Halbleiter-und Festkörperphysik, Johannes Kepler Universität, Linz, Austria SnTe is a ferroelectric semiconductor with similar properties as GeTe, which has already been extensively studied, notably for applications in spintronics. However, the lower critical temperature of SnTe (around 100K) makes it an ideal candidate to investigate the ferroelectric transition. Here we present a study of its bandstructure with photoemission spectroscopy. We follow the evolution of the Rashba splitting induced by the ferroelectric distortion in the bulk and discover drastic deviations from a mean-field-like transition. In particular, the persistence of a splitting at room temperature supports an order-disorder type of transition, questioning the topological nature of surface states. We conclude by showing ongoing work on time-resolved photoemission spectroscopy.

513	Are high-energy photoemission final states free-electron-like?
	Vladimir N. Strocov ¹ , Fatima Alarab ¹ , Procopious Constantinou ¹ , Leonid L. Lev ² , Jan Minár ³ , Lorent Nicolaï ³ , Jan Očenášek ³ , Thorsten Schmitt ¹ , Taylor J. Z. Stock ⁴ ¹ Swiss Light Source, Paul Scherrer Institute, ² Moscow Institute of Physics and Technology ³ University of West Bohemia, Plzeň ⁴ London Centre for Nanotechnology, University College London
	Three-dimensional (3D) electronic bandstructure is fundamental for a vast diversity of physical phenomena in solid-state materials, including topological phases, interlayer interactions in van- der-Waals materials, etc. Interpretation of ARPES data in terms of 3D bandstructure is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on various metals and semiconductors reveal, however, that even at high excitation energies the final states can be quite complex, where several Bloch waves with different out-of-plane momenta form a complex structure of the spectral peaks. Our findings are essential for accurate determination of the 3D bandstructure from the ARPES experiment over a wide range of materials and excitation energies.
514	Observing and manipulating orbital textures in quantum materials
	Michael Schüler ^{1,2} , Samuel Beaulieu ³ , Ralph Ernstorfer ⁴ , Rupert Huber ⁵ , Ulrich Höfer ⁶ , Suguru Ito ⁶ , Niels Schröter ⁷ , Michael Sentef ⁸ , Yun Yen ¹ ¹ Paul Scherrer Institute, ² University of Fribourg, ³ University of Bordeaux, ⁴ TU Berlin, ⁵ University of Regensburg, ⁶ University of Marburg, ⁷ MPI Halle, ⁸ University of Bremen
	Angle-resolved photoemission spectroscopy (ARPES) provides an unprecedented "zoom" into the electronic degrees of freedom. Besides mapping the band structure, fingerprints of wave-function aspects such as the orbital texture, associated orbital angular momentum (OAM) and Berry curvature are contained in ARPES. Extracting such wave-function information is a challenge due to the complexity of the photoemission process. Based on accurate theory, we discuss the principles of how exploiting the photon polarization degree of freedom and the crystal orientation can provide wave-function information. We will demonstrate these principles by joint experimental and theoretical work on the transition metal dichalcogenide WSe ₂ and the topological chiral semimetal PdGa.
515	Real-time pump-probe simulations within time-dependent density functional theory
	Dominik Brandstetter, Christian S. Kern, Peter Puschnig, University of Graz
	Real-time time-dependent density functional theory provides an ab-initio framework to directly sim- ulate (sub-)femtosecond pump-probe ARPES experiments. Incident light field(s) of any shape and magnitude can be incorporated, electron correlations are considered at a mean-field level and no assumptions regarding the final state of the escaping electron are required. In this contribution, we study a resonantly driven HOMO-LUMO transition of an organic rod-line molecule to study the intra-molecular charge transfer upon the optical excitation. We simulate the oscillatory behavior in the population of the frontier orbitals resembling detuned Rabi oscillations and study the charac- teristics of the intramolecular charge transfer by simulating photoemission momentum maps to be compared with time-resolved-ARPES experiments.
510	cancelled
517	Photon-energy-dependence of the circular dichroic ARPES with InAs(110)
	Anna Hartl ¹, Dmitry Usanov ¹, Enrico Della Valle ¹, Ján Minár ², Vladimir Strokov ¹ ¹ Paul Scherrer Institut, ² University of West Bohemia, Plzeň
	In ARPES, coupling of polarized light to the valence-band states contains valuable information about their orbital and spin texture. This information, however, is distorted by non-trivial behavior of the photoemission matrix elements. We explored the circular dichroism in InAs(110) over a broad photon-energy range from VUV to soft X-rays, focusing on the Fermi-surface maps. Supported by ARPES computations based on the multiple-scattering Green's function approach (SPR-KKR), we analyzed the experimental data in terms of photon-energy-dependent final states and dichroic matrix elements. Our methodology paves the way towards ARPES investigations of the orbital and spin texture in complex quantum materials.
	END; Postersession with Apéro
	514

ID	New prospects in ARPES FOR QUANTUM MATERIALS POSTER
531	Momentum-space imaging and chemical gating of the novel polarization induced two-dimensional electron and hole gases on AIN single crystals
	Enrico Della Valle ^{1,2} , Debdeep Jena ³, Guru Khalsa ³, Thai-Son Nguyen ³, Vladimir Strokov ², Zexuan Zhang ³ 1 ETH Zürich, ² PSI Villigen, ³ Cornell
	Lattice-matched interfacing of two large band-gap semiconductors such as AIN, AIGaN, and GaN can induce high-mobility electron and hole charge carriers without addition of dopants. Determining this phenomenon are the pseudomorphic strain and the spontaneous polarization along the (0001) direction. To access the physics of the interfacial charge carriers confined in quantum-well states, we have measured their k-resolved band structure with soft-X-ray ARPES. Additionally, we have experimentally demonstrated how deposition of atoms with different electron affinities can move the Fermi level within the heterostructure and eventually increase or deplete the concentration of interfacial electrons and holes.
532	moved to talk 517
533	Doping and temperature dependence evolution of the electronic properties of electron-doped Sr_2IrO_4 seen by ARPES
	Yann Alexanian ¹ , Anna Tamai ¹ , Felix Baumberger ¹ , Robin Perry ² ¹ University of Geneva, Department of Quantum Matter Physics ² London Centre for Nanotechnology Faculty of Maths & Physical Sciences
	Sr_2IrO_4 is a layered perovskite isostructural to the cuprate superconductor La_2CuO_4 . The combination of strong spin-orbit coupling inherent to Ir ⁴⁺ ions and modest Coulomb interaction induces a Mott insulating ground state with Heisenberg spin dynamics. Theses striking similarities with cuprates extend to the unusual metallic state of lightly doped Sr_2IrO_4 characterized by Fermi arcs and a pseudogap. Here, I will present new ARPES data on bulk crystals with higher doping than reached previously. Our results show that nodal states become more coherent with increased doping. At the same time, an antinodal pseudogap persists up to the highest doping, in contrast to previous results on surface doped Sr_2IrO_4 .
604	cancelled

Spintronics and Magnetism at the Nanoscale

Wednesday, 06.09.2023, Room 115

Time	ID	Spintronics and Magnetism at the Nanoscale I Chair: Aleksandr Kurenkov, ETH Zürich & PSI
17:00	601	High-Sensitivity and quantitative Magnetic Force Microscopy for the Analysis of Magnetic Multilayers supporting Skyrmions
		Hans J. Hug, EMPA, Swiss Federal Laboratories for Materials Science and Technology and Department of Physics, University of Basel
		The development of magnetic thin film multilayers that support skyrmions through interfacial Dzy- loshinskii-Moriya interaction can benefit greatly from high-resolution magnetic imaging techniques, such as magnetic force microscopy. Achieving highest sensitivity in MFM imaging requires operat- ing in vacuum using cantilevers with quality factors of up to 1 million. However, this requires new operation modes to achieve a reproducible tip-sample distance control when the temperature is changed, or external magnetic fields are applied. Reproducible imaging conditions are essential for differential imaging techniques that can disentangle the contrast from the stray fields arising from the micromagnetic state of the sample from other contributions, such as signals arising from van der Waals force variations from the topography, local variations in the contact potential, or magnet- ic fields arising from spatial variations of the sample thickness and roughness. To obtain the stray field from the measured frequency shift contrast or to test the fidelity of MFM data simulated from the stray field of candidate micromagnetic model structures, a calibration of the MFM tip response to magnetic stray fields can be performed.
17:30	602	Developing Metallic Multilayers Hosting Different Skyrmion Types Toward Local Control via Electric Fields
		Loghman Jamilpanah ¹ , Artur Braun ¹ , Hans Josef Hug ^{1,2} , Andrada-Oana Mandru ¹ ¹ Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf ² Department of Physics, University of Basel, CH-4056 Basel
		The coexistence of two skyrmion types in a single system is highly relevant for future racetrack memory devices using such solitons. Here, we demonstrate a metallic ferromagnetic/ferrimagnetic (FM/FI) bi-layer system in which two skyrmion types are successfully stabilized at room temper- ature. This system has a simpler structure compared to the previous demonstration of the same observation in a FM/FI/FM trilayer. We show also how the two skyrmion types can be tuned by changing the magnetic properties of the FI. The simpler structure together with the FI control layer provide the opportunity for subsequent local control of the skyrmion type and pave the way for device implementation.
17:45	603	Nanomagnets for manipulation of spin qubits
		Michele Aldeghi, Rolf Allenspach, Gian von Salis, IBM Research Zurich
		The stray field of micro- and nanomagnets is exploited to manipulate the spin state of electrons confined in semiconductor quantum dots. Current devices use micromagnets that are uniformly magnetized along the direction of an external magnetic field. Here we introduce "U"-shaped Fe nanomagnets, where shape anisotropy sets a non-uniform magnetization pattern. We study the influence of size, shape and external applied magnetic field on such structures by micromagnetic simulations and spin-polarized scanning electron microscopy. We measure surface magnetization patterns for magnets down to 50 nm in width and discuss how nanomagnets are suitable for driving silicon spin qubits.

18:00	604	Domain wall qubits on magnetic racetracks
		Ji Zou ¹, Stefano Bosco ¹, Jelena Klinovaja ¹, Daniel Loss ¹, Banabir Pal ², Stuart Parkin ² ¹ University of Basel, ² Max Planck Institute of Microstructure Physics
		We propose a scalable implementation of a quantum computer based on hardware-efficient mo- bile domain walls on magnetic racetracks. In our proposal, quantum information is encoded in the chirality of the spin structure of nanoscale domain walls. We estimate that these qubits are long- lived and could be operated at sweet spots reducing possible noise sources. Single-qubit gates are implemented by controlling the movement of the walls in magnetic nanowires, and two-qubit entangling gates take advantage of naturally emerging interactions between different walls. These gates are sufficient for universal quantum computing and are fully compatible with current state-of- the-art experiments on racetrack memories. Possible schemes for qubit readout and initialization are also discussed.
18:15	605	Orbital-torque-induced switching of perpendicular magnetization
		Min-Gu Kang ¹ , Soogil Lee ² , Dongwook Go ³ , Benjamin J. Jacot ¹ , Byong-Guk Park ² ¹ Department of Materials, ETH Zürich ² Department of Materials Science and Engineering, KAIST ³ Peter Grünberg Institut & Institute for Advanced Simulation, Forschungszentrum Jülich & JARA
		Spin-orbit torque (SOT) has been intensively studied to realize energy efficient magnetization switching in spintronic devices. Recently, proposed orbital torque (OT) suggested that the large SOT can be generated even in weakly spin-orbit-coupled light metals by the orbital current. It is a consequence of the orbital Hall and/or orbital-Rashba effect and subsequent orbital-to-spin conversion via spin-orbit coupling. In this talk, we present the current-induced switching of perpendicular magnetization via orbital torque, which is efficiently tailored by orbital-to-spin conversion. Our study suggests that the orbital current can be utilized to further enhance the magnetization switching efficiency in spin-orbit-torque-based spintronic devices.
18:30	606	Spin-orbit torques and thermal contributions to spin transport in CoFeB / LaTiO ₃ / SrTiO ₃
		Lauren Riddiford, Sauviz Alaei, Yuri Suzuki, Shan X Wang, Fen Xue, Xin Yu Zheng Stanford University
		The Rashba-type spin orbit coupling found at the interface of two dimensional electron gases (2DEGs) is of great interest for spintronic applications. Here, we uncover the nature of spin transport from a 2DEG to magnetic metal via second harmonic Hall measurements, spin-torque ferromagnetic resonance, and temperature-dependent ferromagnetic resonance (FMR). While FMR indicates enhanced spin current absorption by the 2DEG, second harmonic Hall measurements reveal a large thermoelectric signal suggesting a strong in-plane thermal gradient generated by passing current through the LaTiO ₃ .
18:45	607	Spin-orbit control of antiferromagnetic domains without a Zeeman coupling
		Marek Bartkowiak, Damaris Tartarotti Maimone, Michel Kenzelmann Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut
		Encoding information in antiferromagnetic (AFM) domains is a promising solution for the ever growing demand in magnetic storage capacity as the vanishingly small stray fields eliminate cross-talk between different domain states. However, the absence of macroscopic magnetization is detrimental to the manipulation and detection of AFM domains. We report evidence for a new AFM domain selection mechanism where the charge transport response is controlled by the rotation of the magnetic field not affecting the Zeeman term. A pronounced new anisotropic magnetore-sistance effect is found in the AFM phases of bulk materials Nd _{1-x} Ce _x CoIn ₅ . Our results indicate that this constitutes a universal effect across multiband materials, opening new perspectives for AFM spintronics.

19:00	608	Interfacing antiferromagnets with different magnetic ordering
		Xanthe Verbeek, Mayan Si, Nicola Spaldin, ETH Zürich
		We study the structural, electronic, and magnetic properties of interfaces between two easy-axis antiferromagnets, Cr_2O_3 and α -Fe ₂ O ₃ . Cr_2O_3 is the prototypical linear magnetoelectric, in which an applied magnetic field induces an electric polarization, whereas isostructural α -Fe ₂ O ₃ has a different antiferromagnetic ordering that does not allow a linear magnetoelectric response. We use density functional theory to study crystallographically distinct interface environments and extract magnetic interaction parameters, which we input into Monto Carlo simulations to determine the finite-temperature magnetic properties. We find interfacial magnetizations and antiferromagnetic domain orderings that are strongly interface-structure dependent.
19:15	609	Propagating Spin-Wave Spectroscopy Studies in a Millikelvin Temperature Environment
		David Schmoll ¹ , Sebastian Knauer ¹ , Rostyslav Serha ¹ , Roman Verba ² , Andrey Voronov ¹ , Carsten Dubs ³ , Andrii Chumak ¹ ¹ University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, Austria. ² Institute of Magnetism of NAS of Ukraine and MES of Ukraine ³ INNOVENT e. V. Technologieentwicklung, Prüssingstraße 27 B, Jena, Germany
		Technological advancements in the access to millikelvin temperatures allow first steps towards the investigation of individual magnons in the field of quantum magnonics. Such experiments require millikelvin base temperatures, to ensure a thermal magnon-free system. Here, we measured spin-wave transmission at temperatures below 45 mK in a yttrium-iron-garnet (YIG) film on a 500 μ m-thick gadolinium-gallium-garnet (GGG) substrate, using a cryogenic propagating spin-wave spectroscopy (PSWS) setup. These experiments revealed an increase of the spin-wave damping due to the paramagnetic GGG substrate, which was further investigated in temperature dependent ferromagnetic resonance (FMR) studies and k-dependent PSWS experiments. The obtained results consolidate the understanding of spin waves at cryogenic temperatures.
19:30		

Thursday, 07.09.2023, Room 115

Time	ID	Spintronics and Magnetism at the Nanoscale II Chair: Jeffrey Brock, ETH Zürich & PSI
14:00	611	The Spin-wave Asymmetry in Confined Rectangular $Ni_{80}Fe_{20}$ Microstrips
		Santa Pile ¹ , Andreas Ney ¹ , Kilian Lenz ² , Ryszard Narkowicz ² , Jürgen Lindner ² , Sebastian Wintz ³ , Johannes Förster ³ , Sina Mayr ⁴ , Markus Weigand ⁵ ¹ Johannes Kepler University Linz, ² Helmholtz-Zentrum Dresden-Rossendorf ³ Max Planck Institute for Intelligent Systems, ⁴ Paul Scherrer Institut, Villigen PSI ⁵ Helmholtz-Zentrum Berlin für Materialien und Energie
		The design of a microstructure can affect the internal field distribution and, therefore, the spin-wave (SW) behaviour. Under the uniform excitation only symmetric SW interference pattern is expected. Changes in the geometry of the structure can cause breaking of the symmetry. In this work the asymmetry parameter (AP) of SW dynamics in confined rectangular permalloy microstrips is suggested and applied to the TR-STXM results and micromagnetic simulations. In this work profiles of the out-of-plane component of the dynamic magnetization are analyzed. The results show a higher asymmetry for a strip when a second perpendicular microstrip is placed at the distance of 2 μ m.

14:30	610	Dranagating onin wave enertropeony in a liquid phase
14:30	612	Propagating spin-wave spectroscopy in a liquid-phase epitaxial nanometer-thick YIG film at millikelvin temperatures
		Sebastian Knauer ¹, Kristýna Davídková ², David Schmoll ¹, Rostyslav Serha ¹, Andrey Voronov ¹, Qi Wang ³, Roman Verba ⁴, Oleksandr Dobrovolskiy ¹, Morris Lindner ⁵, Timmy Reimann ⁵, Carsten Dubs ⁵, Michal Urbánek ², Andrii Chumak ¹
		¹ Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna ² CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno, Czech Republic ³ Huazhong University of Science and Technology ⁴ Institute of Magnetism, Kyiv
		⁵ INNOVENT e.V. Technologieentwicklung, Prüssingstraße 27 B, Jena, Germany
		To realise large-scale integrated magnonic circuits for quantum applications it is required to per- form propagating spin-wave spectroscopy in nanostructures at low temperatures. In this work, we demonstrate all-electrical spin-wave propagation in a 100 nm-thick yttrium-iron-garnet (YIG) film at temperatures down to 45 mK. The extracted spin-wave group velocity and the YIG saturation magnetisation agree well with the theoretical values. We show that the gadolinium-gallium-garnet (GGG) substrate influences the spin-wave propagation characteristics only for the applied magnet- ic fields beyond 75 mT, originating from a GGG magnetisation up to 62 kA/m (45 mK). Our results demonstrate that the developed fabrication and measurement methodologies enable the realisa- tion of integrated magnonic quantum nanotechnologies at millikelvin temperatures.
14:45	613	Fast isotropic exchange spin waves in Ga:YIG for future magnonic networks
		Khrystyna Levchenko ¹ , Tobias Böttcher ^{2,3} , Moritz Ruhwedel ² , Qi Wang ^{1,4} , Hryhorii Chumak ⁵ , Maksym Popov ⁵ , Igor Zavislyak ⁵ , Carsten Dubs ⁶ , Oleksii Surzhenko ⁶ , Burkard Hillebrands ² , Andrii Chumak ¹ , Philipp Pirro ² ¹ NanoMag research group, Faculty of Physics, University of Vienna ² Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern ³ MAINZ Graduate School of Excellence, Mainz
		⁴ Huazhong University of Science and Technology (China) ⁵ Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv (Ukraine) ⁶ INNOVENT e.V. Technologieentwicklung, Jena
		To facilitate magnonics technology, the delay time in nanostructures should be improved. Hence, single-crystalline sub-100 nm thick films of Ga:YIG and reference YIG were fabricated and characterised via VSM, FMR and BLS. Ga:YIG demonstrates a perpendicular magnetic anisotropy, reduced magnetisation, good Gilbert damping, and an enhanced exchange stiffness, which results in improved (~ 3.4 times) group velocities for k > 30 rad/µm. The spin waves soon (from k ≈ 4 rad/µm) start to exhibit an exchange nature and their dispersion is more isotropic compared to pure YIG. Therefore, Ga:YIG opens access to the operation with fast isotropic exchange spin waves in future magnonic applications.
15:00	614	Influence of paramagnetic GGG substrate on YIG films at millikelvin temperatures
		Rostyslav Serha ¹ , Andrey Voronov ¹ , David Schmoll ¹ , Roman Verba ² , Sabri Koraltan ¹ , Kristýna Davídková ³ , Barbora Budinská ¹ , Qi Wang ⁴ , Oleksandr Dobrovolskiy ¹ , Michal Urbánek ³ , Morris Lindner ⁵ , Timmy Reimann ⁵ , Carsten Dubs ⁵ , Claas Abert ¹ , Dieter Suess ¹ , Sebastian Knauer ¹ , Andrii Chumak ¹ ¹ University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna ² Institute of Magnetism, Kyiv ³ CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno, Czech Republic ⁴ Huazhong University of Science and Technology ⁵ INNOVENT e. V. Technologieentwicklung, Prüssingstraße 27 B, Jena, Germany
		It is known that YIG films on GGG substrates worsen their magnetic properties important for mag- nonics at low temperatures. We present experimental results, simulations, and an analytical theory to clarify the influence of the GGG substrate on a 97 nm-thick YIG film at ultralow temperatures. At low temperatures, the paramagnetic GGG substrate can be magnetized by an external magnetic field. The GGG magnetization creates a stray field in the YIG film that affects its magnetization

		dynamics. In the case of in-plane magnetization of YIG/GGG the FMR frequency is shifted to lower values. Simultaneously, the magnetic damping of YIG increases by more than eight times com-
		pared to measurements at room temperature.
15:15	615	Non-reciprocal magnonic directional coupler
		Noura Zenbaa ¹ , Qi Wang ² , Kristýna Davídková ³ , Sebastian Knauer ¹ , Moritz Ruhwedel ⁴ , Oleksandr Dobrovolskiy ¹ , Sabri Koraltan ¹ , Claas Abert ¹ , Carsten Dubs ⁵ , Michal Urbánek ³ , Philipp Pirro ⁴ , Dieter Suess ¹ , Andrii Chumak ¹ ¹ Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna ² Huazhong University of Science and Technology ³ CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno, Czech Republic ⁴ Fachbereich Physik and Landesforschungszentrum OPTIMAS, TU Kaiserslautern ⁵ INNOVENT e. V. Technologieentwicklung, Prüssingstraße 27 B, Jena, Germany.
		We use a bilayer of YIG/CoFeB to construct waveguides of the directional coupler to induce non-reciprocity in the spin-wave propagation and add new functionalities to the directional coupler. The non-reciprocity due to the symmetry breaking leads to Δk being different in the two propagation directions when magnetized in the Damon-Eschbach configuration (+ $k - k$). Therefore, the coupling length differs in the two directions. At a frequency, where $L_{-k} = 2L_{+k}$; the directional coupler operates as a Y-circulator. The spin-wave dispersion curves are numerically investigated in nm-thick bilayers of YIG(100)/CoFeB(40) and YIG(100)/SiO ₂ (5)/CoFeB(40) plane films as well as in nano-scale waveguides and measured using Ferromagnetic Resonance (FMR) spectroscopy and k-resolved Brillouin Light Scattering (BLS) spectroscopy.
15:30	616	Probing magnetic coupling of spins on surfaces using EPR-STM
		Aishwarya Vishwakarma, S. Kovarik, R. Schlitz, D. Ruckert, Pietro Gambardella, S. Stepanow Department of Materials, ETH Zürich, CH-8093 Zürich
		Manipulating spins and magnetic interactions for quantum computing encounters challenges due to invasive measurements. We employ spin-polarized scanning tunnelling microscopy (STM) to conduct electron paramagnetic resonance (EPR) experiment which probes magnetic interaction between spins delocalized into molecular orbitals of pentacene dimers. Spins in these organic molecules couple through overlapping orbitals within µeV regime, sensitive to exceptional energy resolution of EPR-STM. The dominant exchange coupling is investigated for different dimer configurations on MgO/Ag(100). Despite the anticipated antiferromagnetic coupling, we report ferromagnetic coupling due to current-induced pumping effect. This study aims to offer a non-invasive approach to intrinsic properties of remotely-driven spin.
15:45	617	Modelling the dynamics and consequences of frustrated magnetism
		in the hexagonal manganites
		<i>Tara Tosic, Nicola Spaldin, ETH Zürich</i> Using symmetry analysis, first-principles density functional theory and spin dynamics, we pinpoint the origin of the diffuse neutron scattering observed in hexagonal yttrium manganite (h-YMnO ₃). h-YMnO ₃ is a prototype system for studying frustrated magnetism, due to its dominant first near- est-neighbor anti-ferromagnetic coupling on a triangular lattice. We argue that thermal fluctuations departing from the ground state 120° spin configuration - a scenario ruled out in previous modelling attempts - give rise to short-range correlations. Though a hierarchy of nearest-neighbor exchanges and magnetic anisotropy terms, clusters of ordered spins form and interact with each other, creating excitations. Moreover, we simulate the formation of planar and vertical magnetic domains.
16:00	618	X-ray Linear Dichroic Tomography
		Andreas Apseros ¹ , Christian Appel ² , Claire Donnelly ³ , Zirui Gao ¹ , Manuel Guizar-Sicairos ² , Mirko Holler ⁴ , Johannes Ihli ⁵ , Valerio Scagnoli ¹ ¹ ETH Zürich, ² EPFL, ³ Max Planch Institute for Chemical Physics of Solids, ⁴ Paul Scherrer Institut, ⁵ University of Oxford
		Functional materials, from catalysts to energy storage and load-bearing materials, are hierarchical polycrystalline composites. Their functionality derives from their composition, the 3D arrangement of components and their microstructure; the distribution of crystalline grains and the defects within them. Techniques providing this combination of information are currently either limited to planar

		investigations, provide insufficient spatial resolution, are destructive or don't allow the examina- tion of system-representative volumes, hampering the rational-driven optimization of current and design of next-generation materials. Here, we introduce ptychographic X-ray linear dichroic vector tomography, facilitating a quantitative, non-invasive, and simultaneous intra- and inter-granular characterisation of extended polycrystalline and amorphous samples in 3D with nanometre spatial resolution.
16:15	619	Three-Dimensional Characterization of the Metamagnetic Phase Transition in B2-Ordered FeRh Jamie Robert Massey ^{1,2} , Andreas Apseros ¹ , Peter Derlet ^{1,2} , Claire Donnelly ³ , Simone Finizio ² , Michael Grimes ² , Laura Heyderman ^{1,2} , Jörg; Raabe ² , Joakim Reuteler ¹ , Valerio Scagnolj ^{1,2} , Thomas Thomson ⁴ , Samuel Treves ^{2,5} ¹ ETH Zürich, ² Paul Scherrer Institut, ³ Max Planck Institute, ⁴ University of Manchester, ⁵ University of Basel We use soft x-ray magnetic laminography to characterize the three-dimensional spatial evolution of both the ferromagnetic and antiferromagnetic domains through the FeRh first-order phase tran- sition. We observe different distributions of the nucleating magnetic domains in three-dimensions on heating and cooling. Monte Carlo simulations reveal different sample properties – namely, the sample surface and local variations in the exchange energy - are responsible for the nucleation of domains of differing magnetic order. This asymmetry suggests the microscopic mechanism re- sponsible for the transition differs on heating and cooling, which affects the systems' macroscopic thermodynamic properties.
16:30		Coffee Break; END
19:30		Conference Dinner

ID	Spintronics and Magnetism at the Nanoscale Poster
631	Controlling interactions in a kagome artificial spin ice coupled to a cobalt underlayer
	Tianyue Wang, Luca Berchialla, Peter Derlet, Laura Heyderman, Gavin Macauley ETH Zürich & Paul Scherrer Institute
	Artificial spin ices are arrays of nanomagnets, which are coupled through dipolar interactions. The kagome artificial spin ice is the archetypal, highly frustrated example. It is predicated to exhibit a rich phase diagram but the ground state proves difficult to reach. In this project, we investigate how the presence of a cobalt underlayer and a platinum spacer affects the interactions between nanomagnets, and whether it promotes the formation of a low energy state on thermal annealing. By using magnetic field microscopy and x-ray photoemission electron microscopy, we study how the position of magnetic domains in the thin film layer influences the effective interaction between nanomagnets.
632	Nonlinear spin-wave transport in the YIG nano-waveguides
	Kristýna Davídková ¹ , Andrii Chumak ¹ , Carsten Dubs ² , Sebastian Knauer ¹ , Morris Lindner ² , Timmy Reimann ² , Michal Urbánek ³ , Andrey Voronov ¹ , Qi Wang ¹ , Ondřej Wojewoda ³ ¹ University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, Austria ² INNOVENT e. V. Technologieentwicklung, Prüssingstraße 27 B, Jena, Germany ³ CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno, Czech Republic.
	We report the nonlinear spin-wave transport in the array of the ten and ninety 260 nm wide YIG nano-wave- guides. A new method based on Ar ⁺ ion beam etching was developed for the nano-waveguide fabrication using a positive CSAR resist as a hard mask. For generating and detecting spin waves, 2 μ m wide mi- crowave antennas spaced 5 μ m apart are used. The propagating spin-wave spectroscopy is measured in Damon-Eshbach and backward volume configurations for different microwave powers to evaluate the efficiency of the nonlinear multimagnon scattering processes and compare it with the reference case of a continuous YIG film.

633	Ultrafast Magnetization Dynamics in Arrays of Dipolar-Coupled Permalloy Nanostructures
	Davide Pecchio ^{1,2} , Sergii Parchenko ³ , Laura Heyderman ^{1,2} , Kevin Hofhuis ² , Sourav Sahoo ^{1,2} , Valerio Scagnoli ^{1,2} † ETH Zürich, ² Paul Scherrer Institute, ³ European XFEL GmbH
	Despite more than two decades of research, the proposed microscopic mechanisms underpinning laser-in- duced ultrafast demagnetization in magnetic thin films are not fully established. Little attention has been paid so far to nano-sized systems, where dipolar coupling and shape anisotropy may play an important role. We show that the optically-induced ultrafast magnetization suppression in arrays of parallel-oriented per- malloy nanostructures can substantially differ from that of unpatterned thin films. In thin films, the Kerr signal increases before the material's demagnetization, suggesting an optically induced spin transfer (OISTR) between the sublattices of the alloy. In contrast, the efficiency of this mechanism is highly reduced in the nanostructures.
634	Strong lateral exchange coupling and current-induced switching in single-layer ferrimagnetic films with patterned compensation temperature
	Ales Hrabec ^{1,2} , Zhentao Liu ^{1,2} , Zhaochu Luo ³ , Ivan Shorubalko ⁴ , Christof Vockenhuber ¹ , Laura Heyderman ^{1,2} , Pietro Gambardella ¹ ¹ ETH Zürich, ² Paul Scherrer Institute, ³ Peking University ⁴ Swiss Federal Laboratories for Materials Science and Technology
	Magnetic interlayer couplings are widely explored in spintronic architectures, while the lateral couplings are rarely studied. Here we demonstrate a lateral interfacial exchange coupling based effect in ferrimagnetic thin film systems by patterning the device into regions with different compensation temperatures via oxidation and He ⁺ irradiation. We show that the coupling induced exchange bias can reach up to 2.5 T in nanoscale domain wall track devices. Furthermore, by combining with spin orbit torques, we demonstrate current induced switching of compensated ferrimagnet and lat- eral exchange bias structures. The discovery of lateral exchange coupling opens new possibilities in planar spintronic device designs.
635	Spin Waves in a Three-Dimensional Artificial Spin Ice Structure
	Sourav Sahoo ¹ , Anjan Barman ¹ , Sam Ladak ² , Andrew May ² , Amrit Kumar Mondal ¹ , Arjen van den Berg ² ¹ Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences ² School of Physics and Astronomy, Cardiff University
	Exploration of high-frequency magnetization-dynamics in three-dimensional (3D) magnetic nanostructures may lead to paradigm-shifting in next-generation spintronic and magnonic devices. Despite remarkable progress in fabrication, the measurement and interpretation of magnetization-dynamics in 3D magnetic structures has remained challenging. Here we present the measurement of coherent spin-waves within a 3D artificial spin-ice (ASI) system, fabricated by using two-photon lithography and thermal evaporation. Two spin-wave modes were observed in the Brillouin light scattering (BLS) spectra whose frequencies showed nearly monotonic variation with the applied magnetic field strength. Numerical simulations revealed the collective nature of the modes extending throughout the complex network of nanowires while showing spatial quantization with varying mode quantization numbers.
636	Full dipolar model for the Archimedean lattices of spin ices
	Aleksandra Pac ¹, Gavin M. Macauley ¹², Jamie R. Massey ¹², Frédéric Mila ³, Peter M. Derlet ¹², Laura Heyderman ¹² ¹ Paul Scherrer Institute, ² ETH Zürich, ³ EPFL
	Artificial spin ices are arrays of dipolar-coupled single domain nanomagnets, which exhibit rich behaviour. We study a family of artificial spin ices, formed by placing out-of-plane nanomagnets on the vertices of the Archimedean lattices. By demagnetising these arrays using field protocols and imaging their configuration using magnetic force microscopy, we observe different types of magnetic ordering. We use experimental results and the Metropolis Monte Carlo simulations to obtain the residual entropy, magnetic correlations and effective temperatures for various lattice types. This allows us to catalogue the behaviour for lattices with varying frustration in the framework of a full dipolar model.

637 Remarkable robustness of metastable skyrmion lattice in NdMn, Ge, at room temperature Samuel Treves 1, Andreas Apseros 2, Simone Finizio 3, Naoya Kanazawa 4, Aki Kitaori 4, Patrick Maletinsky¹, Jamie Robert Massey^{2,3}, Valerio Scagnoli^{2,3}, Yoshinori Tokura⁴, Victor Ukleev ¹ Department of Physics. University of Basel. 4056 Basel. ² ETH Zürich. ³ Paul Scherrer Institut, ⁴ University of Tokyo Metastable magnetic topological textures are of high interest to the spintronics community, in part because may find applications in future magnetic data storage technologies. NdMn₂Ge₂ is a rare-earth complex noncollinear ferromagnet, which has been shown to host metastable skyrmions at room temperature with no applied magnetic field. Here we, present a scanning transmission x-ray microscopy study on a skyrmion lattice within a single crystal NdMn, Ge, lamella. We demonstrate the robustness of this lattice to temperature and magnetic field variations, and thereby the potential of this material for future spintronics applications. 638 Magnetic phase transition in Molybdenum disulfide detected with AFM Akash Gupta, Alexina Ollier, Marcin Kisiel, Mehdi Ramezai, Andreas Baumgartner, Urs Gysin, Christian Schönenberger, Ernst Meyer, University of Basel Low doping electron-electron interactions in monolayer MoS, lead to a ferromagnetic spin order, whereas larger occupation of spin-polarized energy bands results in paramagnetism. The electron density of MoS, might be tuned with gate voltage, thus providing the switch ability of the ferromagnetic to paramagnetic first-order phase transition. An abrupt phase transition in two-dimensional semiconductor gated MoS₂ monolaver is detected by magnetic force spectroscopy. Spontaneous reproducible changes of the magnetic force were observed at doping concentration equal to n = 3.0 × 1012 cm-2 and are attributed to first order ferromagnetic to paramagnetic phase change. Linear dependence of force versus external magnetic field was noted in the paramagnetic state, whereas no dependence was found in ferromagnetic state. 639 High frequency antennas for all-electrical excitation and detection of propagating spin waves Andreas Höfinger, David Schmoll, Andrey Voronov, Sabri Koraltan, Claas Abert, Dieter Suess, Andrii Chumak. Sebastian Knauer University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, Austria. A requirement for the realisation of large-scale magnon-based circuits is the low-loss excitation and detection of spin-waves. To minimise radiation losses and to approach single magnon level, an efficient coupling of high frequency microwave signals to propagating spin waves is required. In particular, large-area impedance-matched and on-chip lithographed nanoantennas are necessary. Here we demonstrate an efficient coupling between electromagnetic waves and spin waves with different nanoantenna designs, using finite element and finite difference micromagnetic simulations. Specifically, radiation and reflection losses are investigated. Further, we fabricate and measure the characteristics of the nanoantennas deposited on yttrium-iron-garnet films using vector network analyser. 640 Phase Transitions and Magnetic Order in a Ruby Lattice Artificial Spin Ice Luca Berchialla¹, Peter Derlet^{1,2}, Laura Heyderman^{1,2}, Gavin Macauley^{1,2}, Valerio Scagnoli^{1,2}, Tianyue Wang 1,2 ¹ Paul Scherrer Institute, ² ETH Zürich Artificial spin ice are arrangements of dipolar coupled nanomagnets, which exhibit a range of interesting behaviour. Here, we study an artificial spin ice based on the ruby lattice. This pattern has a complex unit cell with 12 nanomagnets and two lattice constants that define it. By varying the two lattice constants independently, we can change the interaction between nanomagnets. Using x-ray photoemission electron microscopy we observed different ordering mechanisms depending on the lattice constants. Moreover, the system can order in one or two steps as shown by Monte Carlo simulations.

641	Phase Transitions and Magnetic Order in a Twisted Form of the Kagome Artificial Spin Ice
	Gavin Macauley ^{1,2} , Luca Berchialla ¹ , Aleksandra Pac ¹ , Tianyue Wang ^{1,2} , Rhea Stewart ^{1,2} , Armin Kleibert ¹ , Valerio Scagnoli ^{1,2} , Peter Derlet ^{1,2} , Laura Heyderman ^{1,2} ¹ Paul Scherrer Institute, ² ETH Zürich
	Artificial spin ices are arrays of strongly-correlated nanomagnets, which provide a valuable platform to study phase transitions. The kagome artificial spin ice is a highly frustrated example that undergoes two separate ordering transitions. We show how rotating each nanomagnet in the kagome lattice about its centre allows us to access a rich phase diagram. Using a combination of magnetic force microscopy to characterise the as-grown states and x-ray photoemission electron microscopy to observe the thermally-active states, we determine how ordering proceeds in the different arrays. We find that the rotation maps from a spin ice sector near hexagonal geometries to a ferromagnetic phase, and then to a flux closed state.
642	2D curved nano-conduits for magnonic transport made of GaYIG
	Andrey Voronov ¹ , Ondřej Wojewoda ² , Kristýna Davídková ² , Qi Wang ³ , Carsten Dubs ⁴ , Michal Urbánek ² , Andrii Chumak ¹ ¹ University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, Austria ² CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno, Czech Republic ³ Huazhong University of Science and Technology ⁴ INNOVENT e. V. Technologieentwicklung, Prüssingstraße 27 B, Jena, Germany
	We present a study on the effective propagation of spin waves in curved nano-conduits made of Galli- um-substituted Yttrium Iron Garnet (GaYIG) using micro-focused Brillouin Light Scattering spectroscopy. The investigation was carried out in the Forward Volume geometry to ensure an isotropic in-plane medium for spin-wave propagation. The curved nano-conduits have a thickness of 69 nm and a minimum width of 170 nm. Due to the pronounced uniaxial anisotropy of GaYIG, an external magnetic field of 50 mT is sufficient to magnetise it. Long-range propagation of spin waves was observed because GaYIG has a high exchange stiffness. Our results pave a promising way for efficient information transport in 2D magnonic networks.
643	Anisotropic Spin Orbit Torque in Epitaxial Pt (110) Thin Films
	Ryan Thompson, University of Fribourg
	Over the past decade of spintronics research, spin-orbit torque (SOT) has emerged as an ultrafast and en- ergy efficient method for electrically switching magnetizations. Ultrathin heavy metal/ferromagnetic bilayers have been the subject of particular interest, due to the strong spin-orbit coupling in heavy metals, as well as having many materials engineering opportunities to tune the SOT. One promising path forward for this has been epitaxial growth, which has been shown to enhance spin Hall angles and lower critical currents. In this work, we show that the SOT and spin Hall angle exhibit anisotropy with regards to crystallographic direction in epitaxial Pt (110) thin films, providing another avenue for tuning the SOT.
644	From randomly distributed to short range ordered spins: Dy/HOPG
	Alexis Rary-Zinque, Marina Pivetta, Maria Alfonso Moro, Stefano Rusponi, Harald Brune, François Patthey, EPFL
	Magnetization curves recorded with X-ray magnetic circular dichroism on samples with a few % of a mono- layer (ML) of Dy atoms on highly oriented pyrolytic graphite (HOPG) indicate two distinct magnetic species with mutual antiferromagnetic interactions. To understand the origin and magnetic interactions of the spe- cies, spatial distributions of Dy atoms and small clusters were studied using scanning tunneling microscopy. While deposition at 10 K gave statistical growth, deposition at $40 - 60$ K with possible thermal diffusion led to equally spaced atoms suggesting repulsive dipolar interactions caused by charge transfer between the adatom and substrate. The atoms have a direct capture area of a 3-sites radius; atoms landing inside that area form dimers.

Nanoscale imaging of materials for memories and quantum bits with Scanning NV Magnetometry

Liza Žaper 1,2, Vicent Borras 2, Robert Carpenter 3, Sebastien Couet 3, Boris Gross 1, Marcus Wyss 4,

Patrick Maletinsky ¹, Martino Poggio ^{1,4}, Floris Braakman ¹, Peter Rickhaus ²

¹ Department of Physics, University of Basel, ² Qnami AG, Muttenz, Switzerland

³ IMEC, Loewen, Belgium, ⁴ Swiss Nanoscience Institute, University of Basel

Storing information in magnetic bits requires excellent control over their nanoscale magnetic properties. A prime example of this challenge are STT-MRAM (spin transfer torque magnetic random access memory) devices - which have rather high failure rates. In order to investigate the sources of potential failure, a technique that can resolve small magnetic fields with high spatial resolution is required. The request is even more urgent for next-generation magnetic memory materials, such as antiferromagnets, which generate even smaller magnetic signals. Scanning NV magnetometry (SNVM) is an emerging quantum sensing technique that offers the required sensitivity. Here, we will look at the local magnetic properties of bits in state-of-the-art STT-MRAM devices using SNVM, as well as the SNVM results of Co – nanomagnets for spin qubit control.

Magnetic fields for materials research

This session is supported by the EU project Isabel. (https://emfl.eu/isabel/h2020-project/)

Thursday, 07.09.2023, Room 115

Time	ID	Magnetic fields for materials research Chair: Stefano Gariglio, Université de Genève
17:00	681	Present and Future scientific opportunities in EMFL (European Magnetic Field Laboratory)
		Charles Simon, Laboratoire national des champs magnétiques intenses (LNCMI) CNRS, 25 avenue des Martyrs, FR-38042 Grenoble cedex 09 CNRS, 143 Avenue de Rangueil, FR-31400 Toulouse
		This presentation will review the present and future opportunities in EMFL for high magnetic fields experiments up to 200 T in pulsed fields and 45 T in continuous fields. Some scientific examples will be shown in this presentation, as well as the procedure to request access to high magnetic fields. A fully superconducting magnet of 40 T should be also available in future. EMFL is a European facility located in four sites: Grenoble, Nijmegen, Toulouse and Dresden. EMFL is supported by the European program ISABEL to attract new users especially from Switzerland.
17:30	682	Landau level spectroscopy as a window into topological semimetals
		Ana Akrap, Department of Physics University of Fribourg, Ch. du Musée 3, CH-1700 Fribourg
		A strong magnetic field confines band electrons to a discrete set of Landau levels. The material's band structure is directly linked to the energy spectrum of these Landau levels. With infrared light, we can excite transitions of carriers from one level to another, and these are called inter- Landau level transitions. Since the early 1950s, this Landau level spectroscopy has been widely employed as an extremely sensitive probe of semimetal and semiconductor band structures. I will give an overview of our recent progress on Landau level spectroscopy of Dirac and Weyl semimetals. Through advanced techniques, we can resolve intricate complexities of their bands, all while discovering new physics. I will present our new analysis of highly detailed inter- Landau level transition maps in extreme magnetic fields. I will discuss how novel approaches allows us to further exploit the rich magneto-optical spectra, and gain deep knowledge of topological semimetals.
18:00	683	Exploring quantum matter under extreme conditions at the SwissFEL Cristallina endstation
		Alexander Steppke Laboratory for X-ray Nanoscience and Technologies, Paul Scherrer Institut, Villigen PSI, & Laboratory for Quantum Matter Research, University of Zürich
		Brilliant, ultrashort, and coherent X-ray free-electron laser (FEL) pulses are primarily used for in- vestigation of dynamics at the inherent time and length scale of atoms. In addition, the unprece- dented peak brilliance also allows for single-shot experiments that are not feasible at other X-ray sources. The latter will be used to image quantum many-body states under extreme conditions at the Cristallina endstation of SwissFEL's hard X-ray beamline. In particular, millisecond high magnetic field pulses will be synchronized to the femtosecond X-ray pulses, enabling X-ray dif- fraction at both high magnetic field strengths and low temperatures. In this talk, I will review our commissioning progress reaching magnetic field of up to and beyond 40 T, and elaborate on the path towards user operation after the commissioning phase.

19:00

19:30

84 Dual nature of charge carriers in the iron-based superconductor FeSe_{1-x}S_x

Matija Čulo ¹, Jake Ayres ², Salvatore Licciardello ³, Maarten Berben ³, Yu-Te Hsu ³, Roemer Hinlopen ², Shigeru Kasahara ⁴, Yuji Matsuda ⁵, Takasada Shibauchi ⁶, Nigel Hussey ^{2,3} ¹ Institut za fiziku, Bijenička cesta 46, HR-10000 Zagreb, Croatia
² H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
³ High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, Netherlands
⁴ Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-Ku, Okayama 700-8530, Japan
⁶ Department of Physics, Kyoto University, Sakyo-Ku, Kyoto 606- 8502, Japan
⁶ Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
The discovery of high-temperature superconductivity in materials that contain iron was accepted

with surprise in the condensed matter community, since it had been widely believed that iron with a large magnetic moment is harmful to the emergence of superconductivity. Among these iron-based superconductors, FeSe_{1,x}S, attracted a special attention because of its unique phase diagram, in which superconductivity emerges from a pure electron nematic state, therefore providing an opportunity to study the interplay between nematicity and unconventional superconductivity. The transition to the nematic state in the parent compound FeSe occurs at around 90 K and is followed by the transition to the superconducting (SC) state at around 10 K. This nematic transition can be strongly suppressed by applying a hydrostatic pressure which in turn leads to the stabilization of an antiferromagnetic state. The nematic transition can be strongly suppressed also by changing Se with S, in which case it is believed that it terminates as a nematic quantum critical point (QCP) at the critical S-substitution $x \approx 0.17$ inside the SC state. Here we present our detailed resistivity magnetoresistance and Hall effect study on FeSe, S., conducted on a series of single-crystalline samples with $0 \le x \le 0.25$ spanning the nematic QCP, in high magnetic fields (H) up to 38 T, at very low temperatures (T) down to 300 mK and at high pressures up to 15 kbar. Our results indicate that the normal (non-SC) state of FeSe, s, is highly unconventional and that the charge transport there can be decomposed into two distinct components. One component exhibits the standard Fermi liquid behavior such as T₂ resistivity, H₂ magnetoresistance and H-linear Hall response. The other component shows strong signatures of strange metal behavior, the most important of which are T-linear resistivity, quadrature scaling with H-linear magnetoresistance at high H and anomalous Hall response with an exponential tail-off at high H. The strange metal component becomes very pronounced in vicinity of the nematic QCP and weakens significantly with moving away from it either by changing S-substitution, or by applying pressure. Such complex behavior possibly points towards a dual nature of charge carriers in FeSe, S, triggered by the presence of quantum critical nematic fluctuations that selectively influence only certain parts of the Fermi surface. END; Transfer to Dinner

Conference Dinner

Neutron Science

This session has been organised in collaboration with the Swiss Neutron Science Society.

Wednesday, 06.09.2023, Room 117

Time	ID	NEUTRON SCIENCE I Chair: Gediminas Simutis, PSI Villigen
14:30	701	Field-induced bound-state condensation and spin-nematic phase of SrCu ₂ (BO ₃) ₂ revealed by neutron scattering up to 25.9 T
		Ellen Fogh ¹, Maciej Bartkowiak ², Frédéric Mila ¹, Mithilesh Nayak ¹, Bruce Normand ³, Ekaterina Pomjakushina ³, Oleksandr Prokhnenko ², Henrik Rønnow ¹ ¹ École Polytechnique Fédérale de Lausanne ² Helmholtz-Zentrum Berlin für Materialien und Energie ³ Paul Scherrer Institute
		Chasing new states of quantum matter is a central element in condensed matter physics, motivated both by curiosity but also by the need for understanding of many-body quantum effects. One particularly interesting system is the frustrated Shastry-Sutherland model consisting of orthogonal spin pairs. The network of Cu^{2+} ions in $SrCu_2(BO_3)_2$ is topologically equivalent to this lattice and therefore presents a unique experimental testing opportunity. We study the magnetic excitations in $SrCu_2(BO_3)_2$ upon approaching the first magnetization plateau at 27 T using inelastic neutron scattering. At field values much below the transition an unexpected mode shows up. We set out to identify the nature of this new excitation.
14:45	702	Mapping the magnon modes of a square skyrmion lattice
		Danielle Yahne ¹ , Wolfgang Simeth ¹ , Simon Flury ¹ , David Voneshen ² , Andrey Podlesnyak ³ , Daniel Mazzone ¹ , Jakob Lass ¹ , Christof Niedermayer ¹ , Stephane Raymond ⁴ , Sean Thomas ⁵ , Priscilla Rosa ⁵ , Marc Janoschek ¹ ¹ Paul Scherrer Institut, ² ISIS Facility, Rutherford Appleton Laboratory ³ Spallation Neutron Source, Oak Ridge National Laboratory ⁴ Institut Laue-Langevin, ⁵ Los Alamos National Laboratory
		Intriguing topological magnetic textures, such as skyrmion lattices (SkL), have significant potential for applications to spintronic and memory devices. This potential crucially relies on finding new materials and mechanisms for SkL stabilization. So far, theory has been driving investigations of centrosymmetric SkL's, with only a few bulk material examples, namely Gd ₂ PdSi ₃ , Gd ₃ Ru ₄ Al ₁₂ , GdRu ₂ Si ₂ , and EuAl ₄ . Neutron scattering is an ideal probe to understand the interactions leading to SkL formation in these materials, but is practically impossible owing to the large neutron absorption of Gd and Eu. I will present recent neutron spectroscopy on a newly discovered Ce-based square-SkL, which enables a quantitative understanding of SkL stabilization mechanisms in real materials.
15:00	703	Frustration-induced diffuse magnetic scattering in metallic HolnCu ₄
		Xavier Boraley ¹ , Oliver Stockert ² , Oystein Fjellvag ² , Romain Sibille ¹ , Veronika Fritsch ³ , Daniel Mazzone ¹ ¹ Paul Scherrer Institut, ² Max Plank Institute, ³ Augsburg University
		Materials with geometrical frustration are interesting study cases as they often exhibit unconven- tional phases of matter. While most research on frustrated materials have been performed on insulating spin systems, only little work has been done on metallic systems. Here, I will present recent neutron scattering results of the frustrated metal HolnCu ₄ , which features partial magnetic order where only half of the Holmium atoms exhibit long-range magnetic order, while the other half remain short-ranged. I will present diffuse magnetic scattering data as function of temperature, and discuss how they can be attributed to the magnetic nearest and next-nearest neighbor interactions.
	704	cancelled

15:15	705	Non-trivial effects of cation disorder on spin-ice-like compound Ho ₂ ScTaO ₇
		Amirreza Hemmatzade ¹ , Tom Fennell ¹ , Igor Plokhikh ¹ , Elsa Lhotel ² , Arkadiy Simonov ³ , Dharmalingam Prabhakaran ⁴ ¹ Paul Scherrer Institut, ² Institute Neel, ³ ETH Zürich, ⁴ University of Oxford
		Here we present our most recent results on the effects of charge disorder on classical spin ice. Motivated by our obsrvations in the effects of correlated disorder in both structure and magnetism of fluoride pyrochlore compound CsNiCrF _e we set out to study the effects of charge disorder in B-site of classical spin ice, Ho ₂ Ti ₂ O ₇ , our system of choice is Ho ₂ ScTaO ₇ . We identify the effects of disorder on the lattice structure, in modification of the crystal electric field potential and in the spin ice state.
15:30	706	Reverse Monte-Carlo modeling of artificial spin systems
		Artur Gregor Glavic ¹ , Gavin Macauley ^{1,2} ¹ Paul Scherrer Institute, ² ETH Zürich
		Patterns of nano-scale magnets are important systems to investigate potential applications but also fundamental physics of dipole-diple interactions. With certain frustration, artificial spin-ices can be created with highly degenerate ground states. These form only short range magnetic correlations that were predicted by Monte-Carlo simulations. We have used GISANS to study the magnetic correlations in a system of out-of-plane magnetized FeNi cylinders on a triangular lattice. Using the Yoneda line to extract a cut in the in-plane structure factor at various sample rotations we could gather the full 2D structure factor. With the application of reverse Monte-Carlo modeling and DWBA we were able to perform a model free data analysis.
15:45	707	Complex magnetic order and inverse magnetic melting in $\text{Ce}_{3}\text{TiSb}_{5}$
		Marc Janoschek ¹ , Simon Flury ¹ , Yongkang Luo ² , Wolfgang Simeth ¹ ¹ Paul Scherrer Institut, ² Huazhong University of Science & Technology
		We report high-resolution neutron diffraction on the heavy fermion antiferromagnet Ce ₃ TiSb ₅ . Our specific heat and magnetic susceptibility measurements as a function of magnetic field reveal a phase diagram with three distinct magnetic phases. Using neutron diffraction we study the magnetic structure, and uncover a multi-k spin structure in the intermediate field phase. Magnetic multi-k structures are of current interest because they are an important ingredient for topologically non-trivial properties. Finally, our measurements demonstrate that the high-field magnetic phase exhibits inverse melting, where the magnetically ordered state becomes disordered upon cooling, which suggests that the complex magnetic order of Ce ₃ TiSb ₅ is driven via the competition of several degrees of freedom.
16:00	708	Study of new strong-leg spin ladder with neutron scattering
		Jonas Philippe, Marc Janoschek, Daniel Mazzone, Gediminas Simutis, Paul Scherrer Institut Quantum simulators are experimentally available materials, which satisfy well-defined quantum Hamiltonians and allow the quantitative prediction of spectacular many-body effects. An example of such materials are ideal spin ladders. So far, only one strong-leg spin ladder was studied. We recently managed, thanks to a breakthrough, to grow a second strong-leg spin ladder in large crys- tals, and deuterate them – making a study with neutron spectroscopy achievable. Here, we present our neutron spectroscopy measurements where both time of flight and multiplexing instruments were used. We determined the excitation spectrum from which the dispersion and Hamiltonian parameters were extracted. Finally, we will discuss future work to tune this material using uniaxial pressure.
16:15		
16:30		Coffee Break

Time	ID	NEUTRON SCIENCE II Chair: Marc Janoschek, PSI Villigen, Gediminas Simutis, PSI Villigen
17:00	711	Search for Axion-Like Dark Matter and Exotic Yukawa-Like Interaction
		Ivo Schulthess, Universität Bern
		Despite the undoubted success of the Standard Model of particle physics, it fails to answer many longstanding questions. These include the observed dark matter and the baryon asymmetry in our universe. Many theoretical models that try to answer those questions require new particles and gauge bosons, which must be verified or excluded experimentally. In this talk, I will present the search for two such candidates. The first candidates are ultralight pseudo-scalar particles called axion-like particles (ALPs). We searched for them using a Ramsey-type apparatus for cold neutrons. A hypothetical coupling of ALPs to gluons would manifest in a neutron electric dipole moment signal oscillating in time. Twenty-four hours of data have been analyzed in a frequency range from 23 μ Hz to 1 kHz, and no significant oscillating signal has been found. Present dark-matter models allow for constraining the coupling of ALPs to gluons. The second candidate is an axial-vector gauge boson that could mediate a Yukawa-like interaction in the millimeter range between Standard Model fermions. We built a tabletop experiment that applies Ramsey's technique to the proton spins of hydrogen in water. We performed a proof-of-principle search for this exotic interaction and measured radio-frequency effects like the Bloch-Siegert shift and dressed spin states.
17:30	712	Nonreciprocal chiral magnons in multiferroic Ni ₃ TeO ₆
		Daniel Mazzone ¹, Jakob Lass ¹, Brigitte Decrausaz ² ¹ Paul Scherrer Institut, ² Universität Zürich
		The interplay among electronic charge, orbital, spin and lattice degrees of freedom in quantum materials can stabilize a variety of collective phenomena. Substantial understanding concerning the microscopic origin of these correlated quantum phases is gained through microscopic studies susceptible to the various degrees of freedom, and their dependencies on external tuning parameters. Here, we will show how the combination of various neutron spectrometers equipped with different sample environments allowed us to clarify the mechanism behind the multiferroic properties of Ni ₃ TeO ₆ . Our studies show that its non-chiral crystal structure gives raise to non-reciprocal chiral low-energy magnons, whose condensation trigger a direct coupling between the material's electric polarization and magnetic properties.
17:45	713	Towards higher brilliant beam for neutron scattering under very high pulsed magnetic fields
		Mina Akhyani, Henrik Rønnow, EPFL
		Neutron scattering experiments under high pulsed magnetic fields offer valuable insights into mag- netic structures of materials. However, these experiments are challenging and time-consuming due to low neutron count. To address this, we proposed the idea of a specialized source, designed to increase neutron count and improve brilliance serving only one single instrument. The main features of this source are: an spallation target station fed by an existing high-energy proton accel- erator every 5 - 10 minutes, synchronized with magnetic pulses, which drastically decreases the average heat and radiation load. We investigated different target-moderator-reflector geometries and materials to achieve maximum brilliance. By an ideal neutron transfer, we can gain higher count on the sample.

18:00	714	Neutron beta-decay experiments
		Irina Pradler, Hartmut Abele, Andreas Doblhammer, Alberto José Saavedra García Technische Universität Wien - Atominstitut
		High-precision measurements of angular correlations in neutron beta decay address a number of questions which are at the forefront of particle physics. For a new generation of beta decay experiments, like the PERC currently under construction in Munich, frequency-based beta spectroscopy using the cyclotron radiation emitted by electrons in a homogeneous magnetic field have been emerging. PERC is the successor of the PERKEO-III, which established pulsed neutron beam technique. In this talk some PERKEO-III results and status update for PERC will be presented. Design study of CREScent experiment, a proof-of principle experiment aiming to combine the CRES technique with the signal amplification qualities of an RF cavity, will be introduced.
18:15	715	Neutron radiography investigations of cladding tube materials under interim dry storage conditions
		Sarah Weick, Mirco Große, Conrado Roessger, Martin Steinbrück Karlsruhe Institute of Technology
		Zirconium alloys are used as nuclear fuel cladding material, but hydrogen is taken up by the clad- ding during operation and precipitates during cooling. During interim dry storage the cladding tubes are affected by mechanically and thermally induced stresses. In order to investigate zirconium and cladding tubes at similar conditions, we observe in-situ the hydrogen diffusion in dependence of its solubility and elastic tensile stresses. For this purpose, a facility is used that allows tensile tests at different temperatures when installed in neutron beamlines. It is advantageous to use Neutron Radiography for the metal zirconium, because of its very low neutron cross section that, contrarily to hydrogen, attenuates neutrons only weakly.
18:30	716	Imaging the Magnetization Process of Large Grain Silicon Steel using Polarized Neutrons
		Alex Backs ^{1,2} , Matteo Busi ³ , Wai Tung Lee ² , Dmytro Orlov ¹ , Simon Sebold ⁴ , Markus Strobl ³ ¹ Lund University, ² European Spallation Source, ³ Paul Scherrer Institut ⁴ Research Neutron Source Heinz Maier-Leibnitz (FRM II)
		Grain-oriented silicon steels are established as high performance magnetic core materials in trans- formers. Their large crystal grains with strong texture gives them pronounced uniaxial magnetic properties. Polarized neutron imaging is capable of investigating the bulk magnetic properties with spatial resolution. The technique is capable sensitive to magnentic order and disorder in the form of spin rotation and depolarization, respectively. Here we present a spin-rotation analysis of the remanent state of a silicon steel-sheet and depolarization data showing the magnetization process. The experiments were performed with a custom magnetic environment, which was designed and evaluated using finite element field calculations and Monte Carlo simulations of the neutron spin evolution.
18:45	717	Neutron imaging investigations of the hydrogen distribution in nuclear fuel cladding tubes after simulated accidents
		<i>Mirco Große, Juri Stuckert, Martin Steinbrück, Sarah Weick, Karlsruhe Institute of Technology</i> The reaction of hot nuclear fuel rods with steam results in production of free hydrogen. The re- leased part of this hydrogen provide the risk of hydrogen detonation The other part is absorbed in the fuel cladding tubes made of zirconium alloys. This is the more dangerous one because it can be result in an embrittlement of the cladding tubes and with it in a destruction of the tubes by thermos-shock if an emergency cooling is initiated. The paper presents results of neutron imaging investigations of cladding tubes after accident sim- ulation tests. Hydrogen concentrations were determined quantitatively with a spatial resolution of better than 50 µm.

19:00	718	Investigation of hydrogen distribution in hybrid Ti-Mg implant materials using neutron tomography
		Richi Kumar ¹ , Vasil Garamus ¹ , Pavel Trtik ² , Carsten Blawert ¹ , Maria Serdechnova ¹ , Thomas Ebel ¹ , Wolfgang Limberg ¹ , Regine Willumeit-Römer ¹ ¹ Helmholtz-Zentrum Hereon, ² Paul Scherrer Institut
		Hybrid implants consisting of a permanent Ti-based part combined with a degradable Mg part, are promising solutions to improve the biocompatibility and stability of current implants. In these implants the Ti provides high strength while temporary Mg part is used for bone stimulation or drug delivery. As Mg degrades hydrogen gas is released which ingresses into the Ti part, leading to changes in its properties. To investigate this phenomenon, sintered hybrid samples prepared using metal injection moulding were subjected to saline degradation for a period of 0 to 120 hours and neutron tomography was used to study the ingress of hydrogen in 3D after the degradation of Mg.
19:15	740	cancelled
19:30		END

ID	NEUTRON SCIENCE POSTER
731	BYO Beamline Experiment with FRAPPY
	Marek Bartkowiak ¹ , Markus Zolliker ¹ , Georg Brandl ² , Enrico Faulhaber ³ , Alexander Zaft ² ¹ Laboratory for Neutron and Muon Instrumentation (LIN), Paul Scherrer Institut ² Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich
	³ Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technical University of Munich
	Frappy is a python framework to implement a device communication and abstraction layer for complex sample environment equipment such as cyostats, cryomagnets, furnaces, humidity chambers and for the integration of measurement devices. It is designed to build up complex setups for beamline experiments as well as for lab based measurements. It enables users of large scale facilities to integrate their own setups into the facility data acquisition work flow utilizing the sample environment communication standard SECOP. SECOP is already in use at SINQ/PSI and FRMII/MLZ and will become available at many other user facilities world wide.
732	CREScent: High-precision Electron Spectroscopy
	using Cyclotron Radiation Emissions
	Alberto José Saavedra García, Hartmut Abele, Andreas Doblhammer, Irina Pradler Technische Universität Wien - Atominstitut
	High-precision measurements of angular correlations in neutron beta decay are at the forefront of particle physics. For a new generation of beta decay experiments, like the PERC (Proton Electron Decay Channel) experiment under construction in Munich, frequency-based beta spectroscopy methods using the cyclotron radiation emitted by electrons in a homogeneous magnetic field have been emerging as new methods for high-precision energy measurements. The CREScent experiment is a proof-of-principle experiment aiming to combine the CRES (Cyclotron Radiation Emission Spectroscopy)-technique with the signal amplification qualities of a RF cavity, naturally compensating for the extremely weak signal power of the expected cyclotron radiation pulses.
733	COMSOL Simulations of the Active Magnetic Shielding of the n2EDM Experiment
	Sergey Ermakov, Vira Bondar, Klaus Stefan Kirch, Patrick Mullan, Nathalie Ziehl, ETH Zürich
	The n2EDM experiment searches for the neutron electric dipole moment, which could help understand the baryon asymmetry of the universe. To allow for high precision measurements, an active magnetic shielding (AMS) and a magnetically shielded room (MSR) for passive shielding ensure a magnetically controlled volume.
	Using the AMS coil system external magnetic fields can be compensated. The interplay between the AMS-generated fields and the mu-metal cube of the MSR is examined through COMSOL simulations. The poster discusses implementation and simulation methods and effects of the mu-metal cube on the AMS. The simulations also aim to find optimal positions for the AMS feedback sensors.

734	Competition of Superconductivity and Spin-Density Wave Fluctuations around the Quantum Critical Point of $La_{2-x}Sr_xCuO_4$
	Brigitte Decrausaz ¹ , Johan Chang ¹ , Daniel Mazzone ² ¹ Universität Zürich, ² Paul Scherrer Institut
	Correlated materials often exhibit co-existing or competing quantum phases. An open question is whether the dominant phase eliminates the other one prior to its emergence. Here, I present a high resolution time-of-flight neutron spectroscopy study on the low-energy incommensurate spin excitations of superconducting $La_{1,855}Sr_{0,145}CuO_4$. We find that the spin excitations observed above the superconducting transition temperature are suppressed by the emergence of a superconducting spin gap. Our results suggest that a dynamic competition between superconductivity and magnetism impedes the condensation of the spin-density wave fluctuations.
735	Targeted use of residual stress in electrical steel to increase energy efficiency
	Tobias Neuwirth ¹ , Simon Sebold ¹ , Ines Gilch ² , Benedikt Schauerte ³ , Maximilian Plötz ² , Michael Schulz ¹ ¹ Research Neutron Source Heinz Maier-Leibnitz (FRM II), ² Chair of Metal Forming and Casting (TUM) ³ Institute of Electrical Machines and Chair in Electromagnetic Energy Conversion (RWTH Aachen)
	Climate change necessitates a reduction of fossil fuel usage. Particularly, transport relies primarily on fossil fuel. Electric vehicles are key to reduce this reliance. As part of an interdisciplinary project, we aim to develop more efficient electric drives using magnetic flux guidance in the rotor by targeted residual stress instead of cutouts. Increasing the maximum achievable rotational speed of electric drives by increasing the mechanical stability. Stacked electrical steel sheets compose the rotor, in which the magnetic flux guidance, analyze local magnetic properties in the bulk and help refine the introduction of residual stress.
736	Microstructural Characterization Through Grain Orientation Mapping with Laue Three-Dimensional Neutron Diffraction Tomography
	Stavros Samothrakitis ¹, Jan Capek ¹, Camilla Buhl Larsen ¹, Efthymios Polatidis ¹, Marc Raventos ¹, Soeren Schmidt ², Markus Strobl ¹, Michael Tovar ³, Robin Woracek ² ¹ Paul Scherrer Institute, ² European Spallation Source, ³ Helmholtz Zentrum Berlin
	For polycrystalline materials, key material properties depend significantly on the texture of the crystalline microstructure. Conventional assessment of texture is either limited to surface regions or it is destructive, probing small fractions of a specimen. Only high energy X-rays and neutrons enable quantitative studies of bulk texture. Here, we report how transformative progress in Laue three-dimensional neutron diffraction tomography enables to map several hundred grains and, thus, allows grain orientation assessment in the volume of centimetre-sized samples with statistical significance. The short exposure times and non-destructive nature of Laue3DNDT will support in-situ studies, while future improvements in spatial resolution shall include more accurate grain morphology in corresponding microstructure studies.

Quantum Computing

This session has been organised in collaboration with the NCCR SPIN.

Thursday, 07.09.2023, Room 116

Time	ID	QUANTUM COMPUTING I
		Chair: Dominik Zumbühl, Universität Basel
14:00	801	Introduction
		Dominik Zumbühl, Universität Basel
14:15	802	Scaling-up demonstrations on superconducting qubits
		Daniel Egger, IBM Research Europe - Zürich
		Quantum computers are making significant progress in their performance as measured by their scale, speed, and quality. For instance, in 2022 IBM Quantum announced a 433-qubit quantum processor and a factor of 10 increase in circuit execution speed. Furthermore, coherence times and gate fidelities have also improved as exemplified by T1 times on devices with 127 qubits which typically range from 0.2 ms to 0.3 ms. This increase in device size enables demonstrations of quantum algorithms at a larger scale than what was possible before. In this presentation we will discuss a few recent experiments featuring a large number of qubits. For instance, we will look at Trotter simulations with 127 qubits as well as depth-two quantum approximate optimization on non-planar graphs with 40 nodes. We will explore some of the quantum circuit transpilation methods and error mitigation tools that enable these demonstrations. Increasing the size of such experiments is important for the future of the quantum computing ecosystem. Crucially, this also enables the study of heuristic quantum algorithms designed for noisy hardware.
14:45	803	Efficient quantification of non-classicality using indefinite causal orders
		Kyrylo Simonov, Uni Wien
		Non-classicality is a key resource for quantum technologies and requires its proper and efficient quantification. Manifestation of non-classicality in the form of various phenomena such as exist- ence of non-commutative observables and fundamental invasiveness of measurements suggest different ways to its identification. An efficient recipe is offered by processes featuring indefinite causal order of operations. A particular example is the quantum SWITCH which executes opera- tions in a superposition of their causal orders and can be implemented experimentally. In this talk, we focus on incompatibility of observables and their weak values and show how they can be efficiently quantified via the quantum SWITCH independently on dimensions of the physical system.
15:00	804	Exponential concentration and untrainability in quantum kernel methods
		Samson Wang ¹ , Marco Cerezo ² , Zoë Holmes ³ , Thanasilp Supanut ³ ¹ Imperial College London, ² Los Alamos National Laboratory, ³ EPFL
		Kernel methods in Quantum Machine Learning (QML) have attracted significant attention as a potential candidate for quantum advantage in data analysis. In this work, we study the trainability of quantum kernels from the perspective of the resources needed to accurately estimate kernel values. We identify four sources that can lead to exponential concentration and provide associated concentration bounds of quantum kernels. We also show that training a parametrized data embedding with a kernel alignment method is susceptible to exponential concentration. Our results are verified through numerical simulations for several QML tasks, providing guidelines to ensure the efficient evaluation and trainability of quantum kernel methods.

15:15	805	Coherent manipulation of a Ge/Si core-shell nanowire based gatemon qubit
		Han Zheng, University of Basel
		Transmon qubits based on superconducting circuits are the most popular platform in NISQ era and have witnessed many significant advancements. However, there are several challenges, such as flux noise, crosstalk between qubits, and thermal load due to flux bias. A possible solution are semiconductor-superconductor hybrid systems. The weak link in transmon is substituted by a gate-tunable semiconductor junction, known as gatemon qubit. In this work, we present a gatemon qubit based on a Ge/Si core-shell nanowire Josephson junction. On this new platform we demonstrate the electrical tunability and coherent manipulation of the gatemon qubit, with coherence times on par with other gatemon platforms.
15:30	806	Hybrid Variational Classical-Quantum Computing: Ingredients to make it work
		Zoë Holmes, EPFL
		Parameterized quantum circuits serve as ansätze for solving variational problems and provide a flexible paradigm for programming near-term quantum computers. Here we discuss three fundamental criteria for this paradigm to be effective: expressibility, trainability and generalisability. We will introduce these concepts and present recent analytic progress quantifying to what extent these criteria can be achieved. While more generally applicable, the discussion will be framed around the example of trying to variationally learn an unknown quantum process. We will end with some more open-ended dreaming about the applications of these ideas for experimental quantum physics and quantum compilation.
16:00	807	Quantum computing with hole spin qubits in silicon and germanium quantum dots.
		Stefano Bosco, University of Basel
		Hole spin qubits are promising for large-scale quantum computers because of their large spin-orbit
		interaction (SOI). I will present schemes to engineer SOI, optimizing quantum information processing. Large SOI mediates strong and tunable coupling between spins and photons, that can be engineered to be longitudinal. This coupling enables exact protocols for fast high-fidelity two-qubit gates that work at high temperatures. However, SOI couples the spin to charge noise, causing decoherence. I will discuss qubit designs presenting sweet spots where noise is completely removed. In certain devices, the noise caused by hyperfine interactions with nuclear spins is also strongly suppressed, greatly enhancing coher-
		ence, and reducing the need for expensive isotopically-purified materials.
16:15	808	Tailored error correction codes for spin qubits: towards fault-tolerant quantum computing with semiconductor quantum dots
		Bence Hetényi, James Wootton, IBM Research - Zurich
		Recent spin-qubit experiments demonstrate gate operations and readout well within 1% error rate. This is the error threshold of the surface code assuming that gate errors, measurement errors, and data qubit errors occur with the same probability. Recent developments in error correction codes present opportunities to improve the threshold and reduce connectivity requirements compared to Kitaev's surface code. In this work, we consider state-of-the-art error correction codes and study their performance under anisotropic circuit-level noise that accounts for distinct error rates for gates, measurement and qubit decoherence during idling. We present the spin-qubit layout required for each of the error correction codes, accounting for additional elements required by spin-qubit architectures.
16:30		Coffee Break

Time	ID	QUANTUM COMPUTING II Chair: Gian von Salis, IBM Rüschlikon
17:00	811	Quantum computation and simulation - the semiconductor way
		Lieven Vandersypen, TU Delft
		Quantum computation has captivated the minds of many for almost two decades. For much of that time, it was seen mostly as an extremely interesting scientific problem. In the last few years, we have entered a new phase as the belief has grown that a large-scale quantum computer can actually be built. Quantum bits encoded in the spin state of individual electrons in silicon quantum dot arrays, have emerged as a highly promising direction. In this talk, I will present our vision of a large-scale spin-based quantum processor, and ongoing work to realize this vision. First, we created local registers of spin qubits with sufficient control that we can program arbitrary sequences of operations, implement simple quantum algorithms, and achieve single- and two-qubit gate fidelities of more than 99.5%. In linear quantum dot arrays, we now achieve universal control of up to a record six qubits with respectable fidelities for initialization, readout, single- and two-qubit operations. Second, we have explored coherent coupling of spin qubits at a distance, via two routes. In the first approach, the electron spins remain in place and our coupled to each other via a microwave photon in a superconducting on-chip resonator. In the second approach, spins are shuttled along a quantum dot array, preserving the spin state. When combined, the progress along these various fronts can lead the way to scalable networks of high-fidelity spin qubit registers for computation. Interestingly, the very same quantum dot platform can be used for analog simulation of Fermi-Hubbard physics. We have observed a rich variety of physical phenomena, from Nagaoka ferromagne-time models and heisenberg spin chains to exciton formation.
17:30	812	The power and limitations of learning quantum dynamics incoherently
		Manuel Rudolph ¹ , Sofiene Jerbi ² , Joe Gibbs ³ , Matthias Caro ⁴ , Patrick Coles, Hsin-Yuan Huang ⁴ , Zoë Holmes ¹ ¹ EPFL, ² University of Innsbruck, ³ University of Surrey, ⁴ Caltech Quantum process learning is emerging as an important tool to study quantum systems, but little attention has been paid to whether dynamics of quantum systems can be learned without the sys- tem and target directly interacting. Here we provide bounds on the sample complexity of learning unitary processes incoherently and show that, if arbitrary measurements are allowed, then any efficiently representable unitary can be efficiently learned within the incoherent framework. Howev- er, when restricted to shallow-depth measurements only low-entangling unitaries can be learned. We demonstrate our incoherent learning algorithm by successfully learning a 16-qubit unitary on ibmq_kolkata, and further demonstrate the scalability of our proposed algorithm through extensive numerical experiments.
17:45	813	Growth and characterization of Ge/Si _{1-x} Ge _x planar heterostructures for spin qubits applications
		Arianna Nigro ¹ , Nicolas Forrer ¹ , Alicia Ruiz-Caridad ¹ , Gerard Gadea ² , Ilaria Zardo ¹ ¹ University of Basel, ² Swiss Nanoscience Institute
		The realization of highly stable, controllable, and accessible hole spin qubits is strongly dependent on the quality of the materials hosting them. Ultra-clean germanium/silicon-germanium hetero- structures in quantum wells (QWs) are the perfect candidates. Due to their large scalability po- tential, they pave the way towards the development of realistic and reliable solid state, all-electric quantum computers. The use of chemical vapor deposition (CVD) allows the epitaxial growth at elevated rates of thin films with high structural quality. This work shows the results relative to the growth of epitaxial Ge/Si _{1-x} Ge _x heterostructures for QW-based qubits, using a reverse grading approach. The CVD deposition kinetics and crystalline quality of the materials were investigated.

18:00	814	Germanium as a platform for semi- and superconducting qubits.
		Andrea Hofmann, Universität Basel
		High-quality semiconductor heterostructures build the basic ingredient facilitating quantum trans- port experiments including the promising field of semiconductor spin qubits. Ge quantum wells have recently emerged as a suitable platform for fast spin qubits, due to a combination of favorable properties of the confined states. The Ge platform is furthermore interesting as the Fermi level pinning is close to the valence band, which allows for inducing superconductivity via the proximity effect. We aim to combine the two features and build a platform where we can couple spin and hybrid superconducting qubits via microwave photons.
18:30	824	Towards long-distance quantum networks using trapped ions in optical cavities
		Ben Lanyon, University of Innsbruck
		I have a small research group in Innsbruck that focuses on developing methods to entangle quan- tum systems in remote locations. Our quantum systems of choice are strings of trapped atomic ions. The strings are confined in linear Paul traps with an integrated optical cavity for the collection of 854 nm photons. In this talk I'll briefly introduce our main experimental methods and then give an overview of two recent papers. In the first paper we entangled two ions in buildings a few hundred meters apart. The second paper demonstrates a telecom-wavelength quantum repeater node. Finally, I'll briefly describe some other projects that we have going on.
19:00		Transfer to Dinner

Friday, 08.09.2023, Room 116

Conference Dinner

Time	ID	QUANTUM COMPUTING III Chair: Zoë Holmes, EPF Lausanne
12:00	821	Low field spin qubits in planar Ge
		Georgios Katsaros, Institute of Science and Technology Austria
		In the past few years Germanium has attracted lot of attention as a platform for spin qubits, due to the low effective mass, strong spin orbit interaction, which allows electrically driven spin qubits, and its potential for co-integration with superconducting technology. From 2018 and within just three years a Loss-DiVincenzo (LD), a singlet-triplet hole spin qubit, two-qubit gate devices and a four-qubit Ge quantum processor have been realized demonstrating the potential of Ge for quantum information. However, long-distance qubit coupling remains a significant challenge. Superconducting resonators play a prominent role in realizing high fidelity distant two-qubit gates. In this talk I will present our results on Ge hole spin qubits, at fields compatible with Al technology.

19:30

12:30	822	Hole Spin Qubits in Silicon Fin Field-Effect Transistors
		Rafael Eggli ¹ , Toni Berger ¹ , Leon Camenzind ^{1,2} , Andreas Fuhrer ³ , Simon Geyer ¹ , Eoin Kelly ³ , Andreas Kuhlmann ¹ , Gian von Salis ³ , Richard Warburton ¹ , Dominik Zumbühl ¹ , Carlos Dos Santos ^{1,4}
		¹ University of Basel, ² RIKEN Center for emergent matter science, Tokyo, Japan ³ IBM Research - Zürich, Rüschlikon, ⁴ Université Grenoble Alpes, Grenoble
		By leveraging industrial CMOS manufacturing processes, spin qubits in silicon are a promising ap- proach to achieving scalable quantum computing. While electron spin qubits have reached many milestones, hole spins in silicon present an exciting new platform, allowing for fast, all-electrical qubit control, absence of valleys and low susceptibility to hyperfine noise. Here, we present recent progress on hole spin qubits in fin field-effect transistors, which is an industry-standard transistor technology. We demonstrate single and two-qubit gate operations and explore hole-spin physics in the presence of strong spin-orbit interaction. Furthermore, we investigate the prospects for scala- ble readout and high temperature operation.
	929	cancelled
12:45	815	Capacitive crosstalk in gate-based dispersive sensing of spin qubits
		Alexei Orekhov ¹ , Eoin G. Kelly ¹ , Matthias Mergenthaler ¹ , Felix Schupp ¹ , Nico Hendrickx ¹ , Stephan Paredes ¹ , Rafael S. Eggli ² , Andreas V. Kuhlmann ² , Patrick Harvey-Collard ¹ , Andreas Fuhrer ¹ , Gian von Salis ¹ ¹ IBM Research Zurich, ² University of Basel
		Dispersive gate sensing, where a resonator is directly attached to a quantum dot gate, is a prom- ising spin qubit readout technique. We discuss a potential limitation of this approach arising from capacitive crosstalk. We find that an ac voltage modulation on a plunger gate of a finFET double quantum dot can induce a 20 times larger signal on the neighboring barrier gate attached to a tank circuit with Qi =1000. The corresponding broadening of the inter-dot charge transition limits the operation of the dots as qubits. We explain this effect by capacitive crosstalk between bondpads and discuss further design constrains that need to be addressed when employing this technique.
13:00	825	Circuit QED with a singlet-triplet qubit
		Jann Hinnerk Ungerer ¹ , Alessia Pally ¹ , Artem Kononov ¹ , Sebastian Lehmann ² , Joost Ridderbos ¹ , Claes Thelander ² , Kimberly Dick ² , Ville F. Maisi ² , Pasquale Scarlino ³ , Andreas Baumgartner ¹ , Christian Schönenberger ¹ ¹ University of Basel, ² Lund University, ³ EPFL
		Long-range couplers based on individual microwave photons are desirable for realizing spin-based quantumcomputing. Here, we present a spin-photon interface based on intrinsic spin-orbit interaction in a zinc-blende InAs nanowire. The nanowire hosts a double-quantum dot with epitaxial crystal-phase tunnel barriers and strong spin-orbit interaction. These properties immensely simplify device scalability by rendering electrostatic gates and micromagnets unnecesarry. We integrate such a double-quantum dot in a high-impedance circuit quantum electrodynamics architecture and demonstrate strong coupling between a singlet-triplet qubit and a single microwave photon, a vital step towards scalable quantumcomputing. Furthemore, we make use of this coherent spin-photon interface to determine the qubit coherence and the spin-orbit coupling.
13:15	826	Strain Analysis in Ge Quantum Well by GPA and Raman techniques
		Alicia Ruiz, Arianna Nigro, Gerard Gadea Diez, Nicolas Forrer, Johannes Trautvetter, Ilaria Zardo, Universität Basel
		Silicon with its long coherence time of spins of localized electrons is a candidate for quantum infor- mation processing . Among quantum materials compatible with Si there is germanium (Ge), which has however a 4.2% mismatch. Such a mismatch introduces strains in Si/Ge heterostructures hin- dering mobility. Thus, scattering must be minimized by diminishing strains. Interestingly, electron and hole qubits can be created in Si and Ge, respectively . In this work, we grew Ge quantum wells (QWs) embedded in Si/Ge heterostructures. First, we localized the Ge-QW using energy-dispersive X-ray (EDX) spectroscopy. Finally, we studied the local strain in the Ge-QW by Raman spectroscopy and geometric phase analysis (GPA).

13:30

END

ID	QUANTUM COMPUTING POSTER
841	Coupling a mechanical oscillator to the quantum devices
	Marcin Kisiel ¹, Alexina Ollier ², Mehdi Ramezani ¹, Akash Gupta ¹, Urs Gysin ¹, Andreas Baumgartner ¹, Christian Schönenberger ¹, Ernst Meyer ¹ ¹ University of Basel, ² Swiss Nanoscience Institut
	Understanding mechanisms of energy dissipation is nowadays successfully examined down to the atomic level by means of Atomic Force Microscope (AFM). Graphene bilayers with twist angles are known to host the series of interaction-driven correlated insulating phases with promising applications for nano-electronics, etc. The electron interactions might even lead to the emergence of magnetism, recently reported in monolayer MoS_2 . We report on AFM force and energy dissipation on quantum devices: twisted bilayer graphene (TBG) and monolayer MoS_2 . Ultrasensitive tips acting as a gate over the TBG shows dissipation peaks attributed to fractional filling of the flat energy bands. In gated monolayer MoS_2 a phase transition is detected with magnetic tip.
842	Operational Sweet Spot of Hole Spin Qubit
	Taras Patlatiuk ¹ , Miguel Carballido ¹ , Erik Bakkers ² , Stefano Bosco ¹ , Pierre Chevalier Kwon ¹ , Rafael Eggli ¹ , J. C. Egues ¹ , Daniel Loss ¹ , Simon Svab ¹ , Dominik Zumbühl ¹ ¹ University of Basel ² Department of Applied Physics, Eindhoven University of Technology, The Netherlands
	We demonstrate an operational sweet spot for a Ge/Si core/shell nanowire hole spin qubit, for which both Rabi frequency and spin echo coherence times show a maximum. It is related to the optimal operation point theoretically predicted for hole spins in the group IV crystals. Fitting measured data to a simple model we were able to extract the intrinsic g-factor and estimate the spin-orbit length. We also found a charge configuration of the double dot for which both spins can be individually addressed by two different microwave frequencies. Tuning the interdot tunnel barrier allowed us to control the exchange coupling, paving the way to perform exchange-based two-qubit operations.
843	Enhancing Coherence in Ge/Si Core/Shell Hole Spin Qubits
	Artemii Efimov ¹ , Miguel Carballido ¹ , Pierre Chevalier Kwon ¹ , Simon Svab ¹ , Taras Patlatiuk ¹ , Nicolas Forrer ¹ , Ilaria Zardo ¹ , Erik Bakkers ² , Dominik Zumbühl ¹ ¹ University of Basel
	² Department of Applied Physics, Eindhoven University of Technology, The Netherlands
	We characterize the Ge/Si core/shell nanowires extracting their field effect mobility for various growth pa- rameters. For this, COMSOL simulations are performed to calculate numerically the backgate-to-nanowire capacitance of a realistic device. The observation of sweet spots of the Hahn-echo coherence time of a qubit formed in such a nanowire suggests the presence of low-frequency charge noise. We work on improving nanowire materials to enhance the spin coherence for a new generation of qubit experiments.
844	Impact of screening gates on reproducible quantum dot formation
	Jessica Richter, Felix Schupp, Michael Stiefel, Stephan Paredes, Andreas Fuhrer, Matthias Mergenthaler, IBM Research Zurich
	Hole spin qubits can be implemented by accumulating holes in quantum dots (QDs) along the channel of a silicon fin field effect transistor (finFET). While the finFET design should lead to a field focusing at the tip of the fin, we frequently observe spurious hole accumulation under the gates outside the fin. To mitigate this problem, we implement a planar MOSFET platform including screening gates to constrict the channel. We perform DC measurements to investigate the quantum transport properties of these devices and explore the impact of the screening gates on QD accumulation, shape, and position. Finally, we compare transport properties of the planar MOSFETs with similarly fabricated finFET devices.

845	Trainability barriers and opportunities in quantum generative modeling
	Sacha Lerch ¹ , Zoë Holmes ¹ , Manuel Rudolph ¹ , Thanasilp Supanat ¹ , Michele Grossi ² , Oriel Orphee Moira Kiss ³ , Sofia Vallecorsa ²
	¹ EPFL, ² CERN, ³ Université de Genève
	Quantum generative models have the potential to provide a quantum advantage, but their scalability is still in question. We investigate the barriers to training quantum generative models, focusing on exponential loss concentration. The interplay between explicit and implicit models and losses is explored, leading to untrainability of explicit losses (e.g., KL-divergence). Maximum Mean Discrepancy, a commonly-used implicit loss, can be trainable with the appropriate kernel choice. However, the trainability comes with spurious minima due to indistinguishability of high-order correlations. We also propose to leverage quantum computers leading to a quantum fidelity-type loss. Lastly, data from high-energy-physics experiments is used to compare the performance of different loss functions.
846	Charge sensing of Ge/Si Core/Shell nanowire quantum dots using a high-impedance NbTiN resonator
	Pierre Chevalier Kwon ', Jann Hinnerk Ungerer ', Erik Bakkers ², Artem Kononov ', Taras Patlatiuk ', Joost Ridderbos ', Christian Schönenberger ', Dominik Zumbühl ' ' University of Basel,
	² Department of Applied Physics, Eindhoven University of Technology, The Netherlands
	Hole spins in Ge/Si core/shell nanowires show a strong and electrically tunable spin-orbit (SO) interaction, allowing strong coupling between spins and photons. A highly tunable hole spin qubit was demonstrated using this system. However, the readout so far has relied on transport, so the qubit was not operated in the few-hole regime.
	We present spectroscopy measurements on Ge/Si nanowire double quantum dot system using a high-im- pedance NbTiN resonator. Once the DC transport was fully suppressed, we were able to read dozens of transitions using solely spectroscopy. We find first indications of depletion to the last hole. We are aiming now to achieve spin-photon coupling in our system.
847	Dispersive charge sensing of quantum dots in Ge/Si core/shell nanowires
	Simon Svab ¹, Rafael Eggli ¹, Taras Patlatiuk ¹, Dominique Trüssel ¹, Miguel Carballido ¹, Pierre Chevalier Kwon ¹, Simon Geyer ¹, Ang Li ², Erik Bakkers ², Andreas Kuhlmann ¹, Dominik Zumbühl ¹ ¹ University of Basel
	² Department of Applied Physics, Eindhoven University of Technology, The Netherlands
	Holes in germanium/silicon core/shell nanowires are a powerful platform to study and optimize properties of spin qubits. This is a consequence of the strong, gate-tunable direct Rashba spin-orbit interaction, arising from strong confinement in the nanowire. So far, experiments in this system have been done in DC transport, preventing single-shot readout.
	Here, we show gate-dispersive charge sensing measurements in a Ge/Si nanowire device with a tank circuit
	on the sample PCB. A strontium titanate ring-varactor is employed to achieve in-situ impedance matching down to 11 mK. We present progress towards depleting the nanowire to fewer holes and establishing fast qubit readout.
848	Coherent manipulation of Er ³⁺ electronuclear spin states:
	Towards quantum information processing
	Tianyang Shen, Guy Matmon, Andrin Doll, Manuel Grimm, Markus Müller, Simon Gerber, Gabriel Aeppli, Paul Scherrer Institut
	Rare-earth ions are promising qubit candidates for quantum information processing due to their narrow homogeneous linewidth and long coherence times. Within this family, erbium owns the feature of transition wavelengths at the telecom C-band, allowing for long-distance transmission. Here, in an Er ³ -doped sol- id-state system, we first introduce a scheme for implementing universal quantum gates, where the high-fi- delity two-qubit gates can be realized via the magnetic dipolar Ising interaction. Then, we will explore the potential utilization of their ion pairs. So far, we have demonstrated FTIR spectra to identify different Er ³⁺ pairs and built the laser system with microwave modulation to manipulate their electronuclear spin states.
L	

849	Germanium/Silicon Core Shell Nanowires for Spin / Hole Qubits Fabricated by Chemical Vapour Deposition
	Nicolas Forrer ¹ , Arianna Nigro ¹ , Alicia Ruiz-Caridad ¹ , Gerard Gadea ² , Ilaria Zardo ¹ ¹ University of Basel, ² Swiss Nanoscience Institute
	Ultra-clean germanium/silicon (Ge/Si) core shell nanowires (NWs) have been predicted and proven to host highly stable hole spin qubits, controllable via Rashba spin orbit interaction with a large scalability potential making it possible to develop realistic and reliable quantum computers. To maximise their performance, high quality crystalline NWs grown along (110) direction with well-defined Ge/Si interfaces are needed. We develop ultra clean Ge/Si heterostructures by chemical vapour deposition (CVD) using the vapour liquid solid (VLS) techniques. We have achieved the growth of crystalline Ge/Si core shell NWs, using a low temperature plasma enhanced shell growth. In addition CVD deposition kinetics and crystalline quality were investigated.
850	Ultra-low noise RF comb using a 1 GHz passively modelocked laser
	Florian Emaury ¹ , Karolis Balskus ¹ , Stefan Kundermann ² , Steve Lecomte ² ¹ Menhir Photonics AG, Industriestrasse 42 CH-8152 Glattbrugg ² CSEM, Rue de l'Observatoire 58, CH-2000 Neuchâtel
	Microwave photonics is an innovative solution for radio frequency (RF) generation and distribution, by interconnecting the field between RF and photonics. Within the MICOR project, Menhir Photonics AG in collaboration with CSEM developed an ultra-low phase noise photonics-based RF source. The innovative RF generation not only generates ultra-low phase noise RF signals, but possesses the key advantage of ultra-low loss RF signal distribution via optical fibers. This approach offers unique possibilities, advantages, and applications. Low noise RF sources are needed as a reference at 10/100/1000/10'000 MHz frequencies for frequency synthesizers, radars, timing distribution over fibers and 5G solutions. Here we show the noise characteristics and outputs of the MICOR project.

Biophysics, Medical Physics and Soft Matter

Thursday, 07.09.2023, Room 117

Time	ID	BIOPHYSICS, MEDICAL PHYSICS AND SOFT MATTER I:
		Chair: Christof Aegerter, Universität Zürich
14:00	901	Topology and geometry organize the morphogenesis of active nematic surfaces
		Claire Dessalles ¹ , Tzer Han Tan ² , Aurélien Roux ¹ ¹ University of Geneva, ² Max Planck Institute of Molecular Cell Biology and Genetics
		Morphogenesis, the process by which tissues acquire their shape, hinges on a finely orchestrated collective motion of cells autonomously choreographing themselves to a well-defined final position. The goal of my project is to understand how geometry and topology controls the spontaneous organization of cells that drives morphogenesis, i.e. the growth from a 3D surface to tissues with complex shapes. To investigate this phenomenon, I grow cells on the surface of deformable capsules and monitor the nematic field, cellular flows, and tissue growth. We show that the collective motion of cells is controlled by the nematic order, and topological defects act as morphogenic organizers via active stresses.
14:15	902	Determining how physical constraints shape organism behaviour
		Daphne Laan, Guillermina Rochelle Ramirez-San-Juan, EPFL
		Ciliates are free swimming single-celled organisms that execute complex behaviours such as ob- stacle avoidance and hunting. These organisms are covered by arrays of thousands of active filaments, known as cilia, that beat to generate flows. To understand if behaviour can be encoded by cilia organization and the trade-offs between locomotion and predation risk, we analyze the interactions between the ciliates Didinium nasutum and Paramecium multimicronucleatum, a well- known predator-prey system. By studying the dynamic of these cells we aim to determine how physical constraints shape an organism's behavioural landscape.
14:30	903	Signalling-dependent refinement of cell fate choice during tissue remodelling
		Simone Cicolini ¹ , Sophie Herszterg, Guillaume Salbreux ¹ , Jean-Paul Vincent ² , Marc de Gennes ¹ University of Geneva, ² The Francis Crick Institute
		How biological form emerges from cell fate decisions and tissue remodelling is a fundamental question in development biology. We investigate this interplay during the process of vein refinement in Drosophila pupal wing. By following reporters of signalling activity dynamically, together with tissue flows, we show that vein refinement arises from cell fate adjustments controlled by a signalling network involving Notch, Dpp, and EGFR. Perturbing large-scale convergent-extension flows does not affect vein refinement, showing that pre-patterned vein domains are able to intrinsically refine to the correct width. A reaction-diffusion model of cell fate changes recapitulates the intrinsic tissue ability to establish a thin, regular vein independently of large-scale tissue flows.
14:45	904	Density-dependent active flow transition of biological tissues
		Mathieu Dedenon ¹ , Carles Blanch-Mercader ² , Karsten Kruse ¹ ¹ University of Geneva, ² Curie Institute
		Biological tissues generate active mechanical stress, originating from cellular force dipoles. Active fluid theory predicts this active stress to drive a spontaneous flow transition in a confined geometry. Indeed, polar cells on a confining disc are observed to rotate with spiral orientation. However at a later stage, tissue growth induces cell reorientation into a static aster. To explain this transition, we introduce a passive theoretical coupling between cell density and polarity. Such coupling can lead to patterning effects, allowing spiral-aster coexistence on a disc. This work shows that cell density gradients can compete with activity to stabilize out-of-equilibrium spatial structures that may be relevant to tissue morphogenetic events.

15:00	905	Universal thermodynamic bounds on symmetry breaking in biochemical systems: from error correction to pattern formation
		Shiling Liang ¹ , Daniel Maria Busiello ² , Paolo de los Rios ¹ ¹ Institute of Physics, EPFL, ² Max Planck Institute for the Physics of Complex Systems
		Living systems are out-of-equilibrium and exhibit emergent selection phenomena that break equi- librium symmetries. These phenomena are possible because non-equilibrium conditions expand the non-equilibrium phase space where complex biochemical processes can lie in. We use the matrix-tree theorem to derive universal thermodynamic bounds on these symmetry-breaking fea- tures in biochemical systems. The bounds are independent of kinetics and hold for closed and open networks. We recover thermodynamic constraints in kinetic proofreading and show that reac- tion-diffusion patterns are bounded by the non-equilibrium driving force. Our results pave the way to understanding the role of non-equilibrium conditions in biochemical systems.
15:15	906	Collective behaviors in bacterial colonies at curved surfaces
		Vincent Hickl, Bruno Silva, Empa
		Collective behaviors at interfaces are ubiquitous in living systems and play a crucial role in guiding macroscale phenomena like tissue morphogenesis and the spread of infections. While collections of biological active particles must contend with complex environments, much remains unknown about the effects of substrate geometry on their self-organization. We use bacterial colonies at interfaces as a model active nematic to investigate how surface curvature affects collective behaviors in active matter. Using custom laser-patterned substrates and advanced microscopy, bacterial activity is quantified with high spatiotemporal resolution. The effect of curvature on orientational order in bacterial monolayers is described. These results elucidate how long-range order depends on geometry in biological systems.
15:30	907	Symmetry breaking and number control at the onset of centriole assembly
		Friso Douma, Pierre Gönczy, EPFL
		The centriole is a cylindrical organelle essential for microtubule organization. Centrioles duplicate exactly once every cell cycle through the formation of a procentriole orthogonally to an existing centriole. How the single site of procentriole formation on the cylinder is determined and what mechanisms ensure that precisely one procentriole is formed remains incompletely understood. We use super-resolution expansion microscopy to study the crucial players of procentriole formation in human cells upon varying experimental conditions. High-resolution localization patterns lead us to develop a new theoretical model, providing key insights in centriole duplication dynamics. Ultimately these insights might generalize to unifying principles of self-assembly in biology.
15:45	908	Understanding the principles that govern cell-cycle dynamics using experimental evolution
		Vojislav Gligorovski, Sahand Rahi Laboratory of the Physics of Biological Systems, Institute of Physics, EPFL
		Cellular doubling time, as a crucial determinant of fitness, was optimized during the course of evolution. However, cells of different species exhibit hugely varying doubling times, ranging from a few minutes, to several days. To understand the constraints and trade-offs that dictate cell-cycle dynamics, we created a budding yeast strain in which the doubling time can be controlled exogenously, using light-activated proteins. By applying pulses of light that triggered cell division more frequently than the average cell-cycle period, we conducted an evolutionary experiment that drove the cells towards faster cycles. Cells propagated this way for 1000 generations have shorter G1 phase, are larger and more fit compared to their ancestors.

16:00	909	Polarity mediated self-organization in cellular aggregates
		Mukund Krishna Kothari, Quentin Vagne, Guillaume Salbreux, University of Geneva
		To explore how feedback between cell polarity and mechanics guides self-organization, we devel- op a theoretical model of cells described as active polar beads mechanically interacting with each other. The model is motivated by the self-organization of stem cells into a rosette structure in the early stages of organoid growth. A key ingredient is the active interaction force $A(\vec{p}_i - \vec{p}_i)$ arising from cells crawling over each other. Analysis of two beads in contact reveals 2 time scales controlling the system's transition from a unique stable steady state to degenerate oscillatory states. Numerical simulations of the aggregate show jamming-unjamming transitions, phase separation into hollow compartments, and spontane- ous formation of 1D chains.
16:15	910	Resection of DNA in response to permanent DSBs in S.cerevisiae
		Marco Labagnara, EPFL
		When double-strand breaks happens to the DNA, the cell arrests at the DNA damage checkpoint, preventing its entry into mitosis until the breaks are eventually repaired and the cell can proceed to mitosis. If the breaks persist, cells may bypass the checkpoint, this is called override. It is known that the override time depends on the number of breaks, but how the cell measure this number isn't still unknown. The most accepted model claims that cells measure the amount of resected DNA, but it was observed that mutants with less single-strand DNA take longer to override which contradicts the current model. We aim to demonstrate or deny the current model.
16:30		Coffee Break
		BIOPHYSICS, MEDICAL PHYSICS AND SOFT MATTER II:
		TECHNOLOGY DEVELOPMENT Chair: Christof Fattinger
17:00	911	Mitochondrial structure and dynamics: Mysteries and insights
		Suliana Manley, EPFL
		Mitochondria are heterogeneous organelles best known for their role in energy production through oxidative phosphorylation. Yet, they possess their own genetic material, encoding for key ox-phos proteins. Thus, they must divide to proliferate, which they do asynchronously from their host cell cycle. How do they ensure network maintenance and homeostasis? Using a customized structured illumination microscope, we discovered patterns underlying their division and genome organization, linked to biogenesis and quality control. We share new findings on the interplay between these processes and organelle trafficking within the cell. The intermittent dynamics of these processes imply that a constant imaging speed may miss important features. Thus, we also developed event-driven acquisitions, an adaptive microscope control that uses neural networks to enrich datasets for events of interest.
17:30	912	Generative deep learning models for tracking C. elegans
		Sahand Rahi ¹ , Isinsu Katircioglu ¹ , Alice Gross ¹ , Guillaume Obozinski ² ¹ Institute of Physics, EPFL, ² SDSC, EPFL
		I will be describing our current efforts using generative deep learning models to create artificial training sets for tracking C. elegans worms using machine learning.

47.45	040	Ontegranatic control of the DNA Demons Observation
17:45	913	Optogenetic control of the DNA Damage Checkpoint
		Lorenzo Scutteri, EPFL
		When faced with chromosomal double-strand DNA breaks, cells activate a complex DNA Damage Checkpoint response that arrests the cell cycle and reprograms gene expression. Although the regulators of the core network have been intensively explored, the mechanism of checkpoint override remains poorly understood. To address this gap, we aim to design optogenetically-controlled checkpoint proteins by leveraging the light-sensitive LOV2 domain. By strategically integrating this optogenetic switch into specific positions of target proteins, we can dynamically and reversibly modulate their activity in response to light exposure. Through perturbation of engineered checkpoint proteins at the single-cell level, we aim to establish a quantitative model of DNA Damage Checkpoint override in Saccharomyces cerevisiae.
18:00	914	Tuning colloidal interactions using random light fields
		Augustin Muster, Luis S. Froufe-Pérez, Diego Romero Abujetas Department of Physics, University of Fribourg
		Random optical fields induce interactions between colloidal particles. Being the forces induced by the black body radiation the best known example. These fluctuation-induced interactions can be tuned by choosing an appropriate spectral energy density, hence it is possible to engineer the dynamics and equilibrium configurations. Using a coupled electric and magnetic dipoles model we present in this work how these optically induced pure pair interactions can be tuned and what are the limitations. As an application, we discuss the creation of stealth hyperuniform point patterns using such pair interactions. Moreover, we shall discuss the random fields-induced many body colloidal interactions and their properties.
18:15	915	Predicting meiosis with a waddington landscape analogy
		Maxime Scheder, EPFL
		Meiosis in S. Cerevisiae is a complex process which is tightly regulated by a large gene regulatory network. Such regulatory networks depend on numerous unknown parameters. Instead of modelling the gene network directly, the interest is set toward modelling the decision process through only few external measurable parameters such as the nutrient concentration. To this end, the analogy of the waddington landscape is literally put to use by fitting a two dimensional potential with experimental data.
18:30	916	Microfluidics and imaging to understand the C. elegans brain development from embryo to adulthood
		Elif Gencturk, EPFL
		I regard caenorhabditis elegans, as a first step to understand more complex brains. I believe that microfluidics is the missing ingredient to breakthroughs. I will build microfluidic chips in which a single worm can hatch from an egg, be fed in a controlled manner with bacteria, and be imaged for whole-brain activity throughout its life while receiving stimuli to spark information processing activity. Then I will acquire in molecular biology, genetics, whole-brain imaging, and image analysis to study differences in brain activity in wild-type and mutant worms that fail to develop normally. I will test whether interventions with optogenetics or drugs can rescue brain development, generating useful hints for medicine.

18:45	917	Chaperones-stabilized non-equilibrium native state of proteins
		Paolo de los Rios, Pierre Goloubinoff, Alessandro Barducci, Alberto Sassi, Satyam Tiwari, Bruno Fauvet, Salvatore Assenza Institute of Physics, EPFL
		Under favourable conditions, proteins fold autonomously, and their native state is the minimum of the free energy. Under adverse conditions, like in the presence of elevated temperatures, non-na- tive states be the true minima of the free energy, leading to protein denaturation and subsequent protein aggregation. All cells possess a set of molecular machines, known as chaperones, that counteract protein misfolding and aggregation. We have shown that, using the energy liberated by ATP hydrolysis, they stabilise proteins in their native states even under denaturing conditions., partly challenging our view of the energy landscape of proteins.
19:00		Transfer to Dinner
19:30		Conference Dinner

Friday, 08.09.2023, Room 117

Time	ID	BIOPHYSICS, MEDICAL PHYSICS AND SOFT MATTER III:
		MEDICAL AND MEDICALLY RELEVANT PHYSICS
		Chair: Rainer Leitgeb, Med. Universität Wien
12:00	921	Ultra-fast treatment delivery to enhance the potential
		of proton therapy for cancer treatment
		Vivek Maradia, Paul Scherrer Institute and ETH Zürich
		Proton therapy is a promising cancer treatment, but uncertainties due to anatomical changes and motion limit its effectiveness. To overcome this, Ultra-fast treatments might make tumor irradiations within a single. To enable ultra-fast treatment delivery, we investigate methods to reduce beam-on and dead time. By optimizing beam optics, using a dynamic ridge filter, and employing spot-reduced planning, treatment time can be significantly reduced, allowing for effective treatment of moving targets and expanding the potential of proton therapy.
12:30	922	Protein fibrils disassembly by the HSP70 chaperone machinery
		Davide Cois, Paolo de los Rios, Institute of Physics, EPFL
		Molecular chaperones are ubiquitous highly conserved proteins across all domains and living sys- tems depend on them for cellular homeostasis. The chaperone machinery is able to disassemble toxic aggregates, which are a hallmark of neurodegenerative diseases. In vitro and in vivo studies, for different species, provide experimental evidence of aggregate dispersal by chaperone activity. However, the underlying fundamental mechanisms of disassembly are still not fully understood. In our work, we build a mesoscopic model based on coarse-grained interactions, aiming at describing the experimentally-observed behaviour of these systems and paving the way for for their better understanding.
12:45	923	Deep-tissue imaging via multi-photon adaptive optics
		Maximilian Sohmen ¹ , Çağlar Ataman ² , Alexander Jesacher ¹ , Juan D. Muñoz-Bolaños ¹ , Pouya Rajaeipour ² , Monika Ritsch-Marte ¹ ¹ Med. Univ. Innsbruck, ² Phaseform GmbH
		Combining adaptive optics (AO) with multi-photon techniques is a powerful approach to image deep into biological tissue. Here, we present a new, fast and robust sensorless multi-photon AO scheme. We study our scheme in numerical simulations and in experiments with a novel, opto-fluidic wavefront shaping device that is transmissive, refractive, polarisation-independent, and broad- band. We demonstrate scatter correction of two-photon-excited fluorescence images of microbeads as well as brain cells. Our method and technology could open new routes for AO that were previously unaccessible to multi-photon microscopy.

Rapid T1, T2 and fraction quantification in two-compartment systems using bSSFP profile asymmetries

Nils Plähn, Berk Açiköz, Jessica Bastiaansen, Adèle Mackowiak Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, & Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern

A novel analytical method in magnetic resonance imaging using phase-cycled balanced steady state free precession (PC-bSSFP) was developed for multi-compartment systems. The approach exploits asymmetries in complex PC-bSSFP signal profiles and enables simultaneous quantification of proton fraction, T1 and T2 relaxation times.

Monte-Carlo simulations and experiments at 3 T and 7 T in an acetone-water phantom were performed. The proposed method for multi-parameter quantification in multi-compartment singlet systems was validated with high accuracy, precision, and ultra-rapid reconstruction time.

This work provides important insights for PC-bSSFP multi-parameter quantification with PC-bSS-FP sequences in presence of multiple compartments and a first steps towards more complex multiplet- systems such as water-fat mixtures.

13:15 925 Secure and versatile data and computing platform for cutting-edge data science in biomedical research compliant with the new Data Protection Act

Peter Strassmann, ETH Zürich, LeoMed Support

Leonhard Med is a scientific IT-platform to securely store, manage, and process sensitive data. The digitalization of healthcare and medical devices in everyday life allow collecting vast amounts of health-related data, e.g., clinical and -omics data, data from biobanks and from wearables. Researchers transform such data into insights and decision-making tools for precision medicine and personalized health. Yet, data related to human health is sensitive and requires protection measures to protect the integrity of individuals. What options do researchers have for securely managing sensitive data and what are best practices in the daily research with sensitive data? Leonhard Med offers such a secure and customizable platform for researchers in Switzerland.

Predicting behaviour from interneuron activity in C. elegans

Mahsa Barzegarkeshteli, Alisa Gross, EPFL

We will focus on how C. elegans worm responds to sensory cues depending on its internal brain state. They can be defined as the patterns of neuronal activity that are highly predictive of behaviour. Recent technological advances have made it possible to image whole-brain calcium activity at cellular resolution in freely moving animals. From changes in behaviour and neural dynamics, internal brain states should in principle be inferrable. However, it remains unclear how to identify internal brain states, how they control behaviour, and how neurons can be manipulated to induce state transitions. We will focus on interneurons that integrate sensory information in the sensorimotor pathway to parameterize computational models.

927 Quantitatively pin-pointing individuality at the single neuron level

Matthieu Schmidt, EPFL

END

In this study, I investigate factors contributing to consistent behavior throughout an individual's lifespan in C. elegans. Using optogenetic stimulation, I redefine individuality by examining stimulus-induced behavioral responses. I then explore serotonin's role in maintaining behavioral consistency by optogenetically controlling serotonergic neuron NSM. A custom high-throughput setup tracks individual worms from egg to adulthood, while optogenetic stimulations are applied. An automated data analysis pipeline manages the extensive generated data. This investigation aims to deepen understanding of behavioral consistency and individuality in conspecifics.

13:30

13:45

14:00

Applied Physics & Plasma Physics

Friday, 08.09.2023, Room 114

Time	ID	Applied Physics & Plasma Physics (combined session) Chair: Laurie Porte, EPFL
	951	moved to poster 974
12:00	952	Structured matter based ultrasound sensing
		Dorian Brandmüller, Peter Banzer, Robert Nuster, Institute of Physics, University of Graz
		Metamaterials are artificially structured materials designed to exhibit extraordinary physical prop- erties not found in nature. They have been utilized for a wide range of applications such as beam shaping, lensing, and microscopy. In recent years, metamaterials have also been explored for their potential in refractive index sensing. A metasurface-based ultrasound sensor can provide high flexibility, sensitivity, resolution, and versatility, making it a promising candidate for various applications, including medical imaging and non-destructive testing. We design and study optical metasurfaces to be utilized as ultrasound wave sensors, demonstrating the potential of metamate- rials in multimodal all-optical ultrasound sensing.
12:15	953	Reaction-Diffusion PDE-based framework for tomographic inversions of Tokamak data
		Daniele Hamm, Basil Duval, Christian Theiler, Matthieu Simeoni, EPFL We consider the challenging problem of sparse-view computerized tomography, in the context of plasma emissivity reconstruction in Tokamak fusion devices. Inversion techniques deal with strong artifacts and often lack robustness. We present a reaction-diffusion PDE-based framework for tomographic inversions. A reaction term ensures data-fidelity, while a diffusion term promotes smoothness achieving regularization. The proposed model represents a robust and mathematical- ly rigorous unification of existing and new regularization strategies. Moreover, the model admits a Bayesian interpretation, opening the way to hyperparameter estimation and uncertainty quantifica- tion. Computation employs the open-source Python computational imaging framework Pycsou. We validate the model with Tokamak simulation data in various plasma regimes.
12:30	954	Determination of Nitrogen Concentrations in Fusion Plasmas from Filtered Camera Images
		Emanuel Huett, Basil Duval, Artur Perek, Holger Reimerdes, Christian Theiler, EPFL
		This study presents methods for determining 2D plasma parameters from filtered camera images in a toroidally symmetric tokamak. Filtered cameras offer high spatial resolution and the ability to generate 2D electron temperature, electron density, neutral density, and impurity species maps. The application of such methods are of interest in divertor physics and for more exotic studies such as plasma generation for machine-wall conditioning. This study will in particular focus on the determination of the nitrogen concentration in the divertor and plasma core, since low-Z impurities are the key to control the power exhaust problem in fusion devices.

12:45	955	Recent improvements in the infrared thermography diagnostic on TCV		
		Martim Zurita, Claudia Colandrea, Holger Reimerdes, Dmytry Mykytchuk, Marta Pedrini, and the TCV team, EPFL		
		Recent problems and solutions related to the infrared camera system of the TCV tokamak are reported. These infrared cameras measure the temperature of the device walls during plasma discharges to infer the heat flux impinging on the material surfaces. It was discovered that the signal of the vertical-viewing camera decreased with time throughout 2021 and 2022, due to a loss of transmittance of the vacuum window. To overcome this issue, a time-dependent calibration was adopted. Furthermore, experiments showed that temperature variations of the camera and the optical system can significantly affect the measured signal. To account for this, thermocouple measurements were used to determine the background signal for each discharge.		
13:00	956	Automated steering angle optimization of electron cyclotron heating		
		for fusion plasmas using TORBEAM		
		Antonia Frank ¹ , Federico Felici ¹ , Cristian Galperti ¹ , Emanuele Poli ² , Matthias Reich ² , Olivier Sauter ¹		
		¹ EPFL, Swiss Plasma Center (SPC), ² Max-Planck-Institut für Plasmaphysik		
		One of the main actuators for nuclear fusion experiments is the electron cyclotron (EC) wave, which is used to locally heat and drive current in the plasma. High-performance operation at large fusion devices will require accurate real-time (RT) control of the EC system, including controlling the beam's deposition location in the plasma, which can be modified by adjusting the antenna's steering angles. This work uses the RT-capable beam-tracing code TORBEAM to find the EC de- position characteristics for TCV plasmas. An optimization algorithm for the steering angles is developed as a suitable tool for experiment preparation and a first step towards RT plasma profile and stability control with EC waves.		
13:15	957	Comparing Problem Formulations and Solution Methods		
13:15	957	Comparing Problem Formulations and Solution Methods for the Grad-Shafranov Equation in the MEQ Suite		
13:15	957			
13:15	957	for the Grad-Shafranov Equation in the MEQ Suite Cosmas Heiß, Francesco Carpanese, Federico Felici, André Langmeier, Antoine Merle,		
13:15	957	for the Grad-Shafranov Equation in the MEQ Suite Cosmas Heiß, Francesco Carpanese, Federico Felici, André Langmeier, Antoine Merle, Olivier Sauter, Cristian Sommariva, EPFL Tokamak plasma operation and control requires precise knowledge and control of the plasma MHD force balance equilibrium. The MEQ software is a suite of magnetic equilibrium codes able to reconstruct the magnetic field from measurements on sub-millisecond timescales, predict plasma evolution, and compute required coil currents to achieve a desired plasma state and geometry. We present different strategies for solving the underlying non-linear system posed by the Free- Bound- ary Grad-Shafranov equation and investigate stability and convergence of Newton solvers for var- ious formulations of the residual. Finally, we discuss future directions, including the integration of		
		for the Grad-Shafranov Equation in the MEQ Suite Cosmas Heiß, Francesco Carpanese, Federico Felici, André Langmeier, Antoine Merle, Olivier Sauter, Cristian Sommariva, EPFL Tokamak plasma operation and control requires precise knowledge and control of the plasma MHD force balance equilibrium. The MEQ software is a suite of magnetic equilibrium codes able to reconstruct the magnetic field from measurements on sub-millisecond timescales, predict plasma evolution, and compute required coil currents to achieve a desired plasma state and geometry. We present different strategies for solving the underlying non-linear system posed by the Free- Bound- ary Grad-Shafranov equation and investigate stability and convergence of Newton solvers for var- ious formulations of the residual. Finally, we discuss future directions, including the integration of machine learning for real-time simulation and control.		
		for the Grad-Shafranov Equation in the MEQ Suite Cosmas Heiß, Francesco Carpanese, Federico Felici, André Langmeier, Antoine Merle, Olivier Sauter, Cristian Sommariva, EPFL Tokamak plasma operation and control requires precise knowledge and control of the plasma MHD force balance equilibrium. The MEQ software is a suite of magnetic equilibrium codes able to reconstruct the magnetic field from measurements on sub-millisecond timescales, predict plasma evolution, and compute required coil currents to achieve a desired plasma state and geometry. We present different strategies for solving the underlying non-linear system posed by the Free- Bound- ary Grad-Shafranov equation and investigate stability and convergence of Newton solvers for var- ious formulations of the residual. Finally, we discuss future directions, including the integration of machine learning for real-time simulation and control. Low Momentum Diffusivity Regime in the Toroidal Plasmas		

13:45	959	Suprathermal ion transport in complex magnetic geometries on the toroidal plasma experiment TORPEX			
		Cyrille Sepulchre, Marcelo Baquero-Ruiz, Ivo Furno, Patrick Quigley, Simon Vincent, EPFL			
		Understanding the interaction of suprathermal ions with plasmas is a crucial step in the quest for nuclear fusion, because these ions are required to heat the main plasma during ignition and losing them can damage the vessel walls. Basic plasma experiments like TORPEX have made important contributions in this area through studies of suprathermal lithium ion transport in a simple magnetic configuration. Recently, a more complex magnetic configuration (X-point) has been developed and extensively characterized. We present here two X-point scenarios that have been selected for new suprathermal ion transport studies. Simulations and experiments have been performed in these conditions and are presented and compared.			
14:00		END			

ID	APPLIED PHYSICS & PLASMA PHYSICS POSTER			
971	→ see talk 958			
972	moved to talk 959			
973	Towards exascale in Plasma Physics: A massively parallel performance portable C++ Particle-in-Cell framework			
	Sonali Mayani ¹ , Sriramkrishnan Muralikrishnan ² , Matthias Frey ³ , Alessandro Vinciguerra ⁴ , Michael Ligotino ⁴ , Antoine Cerfon ⁵ , Miroslav Stoyanov ⁶ , Rahulkumar Gayatri ⁷ , Andreas Adelmann ¹ ¹ Paul Scherrer Institute, ² Jülich Supercomputing Center, ³ University of St. Andrews, ⁴ ETH Zürich, ⁵ Courant Institute of Mathematical Sciences, ⁶ Oak Ridge National Laboratory, ⁷ NERSC, USA			
	We present a IPPL, a C++ framework for Particle-in-Cell methods based on dimension independent parti- cles and fields. IPPL makes use of Kokkos and HeFFTe (part of the Exascale Computing Project), and MPI (Message Passing Interface) to obtain a massively parallel performance portable code which works across various hardware architectures. We showcase its performance and utility using "Alpine", a set of mini-apps which solve electrostatic plasma physics problems. These include weak and strong Landau damping, bump- on-tail and two-stream instabilities, and electron dynamics in a Penning trap. Scaling studies are performed on large architectures such as Perlmutter and Piz Daint. We show weak and strong scaling, and pinpoint kernels requiring performance improvements.			
974	A Connection between Probability, Physics and Neural Networks			
	Sascha Ranftl, TU Graz, Institute of Theoretical Physics-Computational Physics			
	We illustrate an approach to study and design physics-consistent infinite neural networks for regression by falling back on stochastic Gaussian process theory. This mathematical connection allows to hard-code prior physics knowledge expressed in terms of linear (differential) operators directly into the model structure, in contrast to weak constraints with optimization regularization. Prime applications are fast, approximative surrogates or emulators (for expensive simulations or experiments) that need to be physically trustworthy and data-efficient, i.e. generalize well in little data regimes. In another aspect, this mathematical connection paves the way for studying symmetries and spectral properties emerging from given learning model architectures. Examples with the Helmholtz or Heat equation will be discussed.			

Autorenverzeichnis - List of Authors

В

Α

Alta al Dana 🦷	101	Dahiah Dawal	100
Abad Begoña	164	Babich Danylo	168
Abele Hartmut	714, 732	Babicz Marta	348 , 355
Abert Claas	614, 615, 639	Backmeister Lucas	71
Açiköz Berk	924	Backs Alex	716
Adelmann Andreas	973	Baeriswyl Dionys	154
Adler Manfred	62	Bakkers Erik	842, 843, 846, 847
Adrover Maximinio	334	Balajka Jan	225
Aeppli Gabriel	136, 848	Ball Justin Richard	958, 971
Agosta Lorenzo	109	Balskus Karolis	850
Agú Martín	439	Banerjee Mitali	83 , 102, 106, 108
Agueni Safia	89	Banto Oberhauser Benjamin	342 . 343
Aichner Bernd	71	Banzer Peter	952
Akhyani Mina	713	Baguero-Ruiz Marcelo	959
Akrap Ana	682 , 115	Barducci Alessandro	917
Alaei Sauviz	606	Barisic Neven	114 , 115, 117
Alarab Fatima	513	Barisic Osor S.	117
Albrecht Florian	221	Barlow Anders	436
Albrigi Tommaso	164	Barman Anjan	635
Aldeghi Michele	603	Barth Sven	126
Alexanian Yann	533 , 502	Bartkowiak Maciej	156, 701
Alfieri Cesare	550, 302 55	Bartkowiak Marek	607, 731 , 153, 182
Alfonso Moro Maria	644	Barzegarkeshteli Mahsa	926
Allenspach Rolf	603	Bastiaansen Jessica	924
Alonso Monsalve Saul	349	Baudis Laura	355
Amato Alex		Bauernfeind Viola	16
	146, 148 439		
Amtmann Christoph Andersson Fredrik	493	Baumberger Felix	502, 503, 504, 508,
Andersson Martin	493 304	Boumgartnar Androaa	533
		Baumgartner Andreas	638, 825, 841
Andreola Pasquale	341	Bavera Simone	491 , 494
Andrews Bartholomew	145	Beaud Paul	168
Andrews Jeff	494	Beaulieu Samuel	514
Ansermet Jean-Philippe	409	Becker Conrad	203
Antognini Aldo	389	Becker Michael	406
Antusch Stefan	305	Bedolla Diana	124
Appel Christian	618	Benedek Giorgio	219
Apseros Andreas	618 , 619, 637	Benedetto Elena	390
Araki Teppei	62	Benhabib Siham	167
Arif Omer	164	Berben Maarten	684
Arndt Markus	142, 408, 436	Berchialla Luca	640 , 631, 641
Arnold Julian	134	Bereyhi Mohammad	401
Arrell Christopher	168	Berger Helmuth	107
Arya Chaitanya	164	Berger Raphael J. F.	124
Asmara Teguh Citra	138	Berger Toni	822
Assenza Salvatore	917	Bernhard Christian	154, 181, 216
Ataman Çağlar	923	Besser Bruno	43
Atkinson Jeremy	347	Betto Davide	181
Auchmann Bernhard	383 , 382, 384	Betzler Alexander	439
Ayres Jake	684	Bevilacqua Tiziano	301
		Bevz Volodymyr	142
		Bhatt Rohit Prasad	412
		Bialek Marcin	409

Biało Izabela

51 01			
Biasco Simone	168	Caro Matthias	812
Biedermann Andrea	87	Carpanese Francesco	957
Bilotto P.	14	Carpenter Robert	645
Bismark Alexander	334, 355	Cataldini Federica	416
Blanc Fred	307	Catena Riccardo	356
Blanch-Mercader Carles	904	Celebi A. T.	14
Blawert Carsten	718	Cerezo Marco	804
Blumer Philipp Peter	326 , 327	Cerfon Antoine	973
Bocquel Juanita	403	Chakraborty Ritwika	315
Böttcher Tobias	613	Chalupa-Gantner Patrick	112
Bohnenblust Lara	495	Chang Johan	105, 152, 169, 170,
Boie Larissa	168	3	505, 734
Bolognini Gaia	412	Charbonneau Micael	62
Bondar Vira	733	Chassot Frédéric	512
Bonini Guedes Eduardo	105, 508, 509	Chen Jiyu	125 , 125
Boraley Xavier	703	Chen Sheng	102
Borin Barin Gabriela	161, 217, 218	Chen Wenting	322
Borras Vicent	645	Chepiga Natalia	186
Bosch Aguilera Manel	402	Chevalier Kwon Pierre	846 , 842, 843, 847
Bosco Stefano	807 , 604, 842	Chikina Alla	215, 508
Braakman Floris	645	Chitra Ramasubramanian	141
Brage Tomas	82	Chmielak Bartos	404
Brand Christian	408, 436	Choi Jaewon	152, 170
Brandbyge Mads	508	Christensen M. H.	148
Brandl Georg	731	Christensen Niels B.	152
Brandmüller Dorian	952	Chumak Andrii	142, 609, 612, 613,
Brandstetter Dominik	515		614, 615, 632, 639,
Brantut Jean-Philippe	412, 437		642
Braun Artur	602	Chumak Hryhorii	613
Brem André	382	Cicolini Simone	903
Brito Ricaurte Cristhian Xav	er	Cimental Chavez Paloma	355
	366	Cobet Christoph	226
Bruder Christoph	134, 402	Cohn-Wagner Ron	105
Brune Harald	644	Cois Davide	922
Brunelli Matteo	402, 407, 415	Colandrea Claudia	955
Brunner Eric	413	Colbois Jeanne	137, 187
Brunner Stephan	958, 971	Colciaghi Paolo	414
Budinská Barbora	142 , 614	Coles Patrick	812
Bühler Tabea Nelly Clara	437	Consiglio Armando	505
Buffat Xavier	386	Constantinou Procopious	513
Busi Matteo	716	Coppard Romain	62
Busiello Daniel Maria	905	Couet Sebastien	645
Busielle Barliel Maria	505	Craievich Paolo	381
0		Crivelli Paolo	326, 327, 342, 343
C		Cuenca Garcia Jose Javier	355
		Čulo Matija	684
Cacho Cephise	505	Culo Malija	004
Calame Michel	103, 161, 228	_	
Camenzind Leon	822	D	
Camponovo Matteo	123		
Canós Valero Adrià	405	D'Amico Francesco	124
Cantatore Eugenio	62	Dai P.	148
Capek Jan	02		
Caputo Marco	736	Dai Zhehao	145
Ouputo Maroo		Dal Maso Giovanni	145 344
Carballido Miguel	736		
•	736 508	Dal Maso Giovanni	344
Carballido Miguel	736 508 842, 843, 847	Dal Maso Giovanni Dal Santo Daniele	344 338
Carballido Miguel Carbone Gerardina	736 508 842, 843, 847 505	Dal Maso Giovanni Dal Santo Daniele Daly Michael	344 338 382

Dankl Mathias Duval Basil 109 953.954 146, 148 Das Debarchan Davídková Kristýna 632, 612, 614, 615, Ε 642 de Gennes Marc 903 **Fbel Thomas** 718 de los Rios Paolo 917, 905, 922 Ebersold Michael 484 de Maria Riccardo 386 Eder Moritz 204 de Vito Giulio 228, 183 Ederer Claude 133 Decrausaz Brigitte 734, 712 Efimov Artemii 843 Dedenon Mathieu 904 Egger Daniel 802 Del Pace Giulia 437 Eggli Rafael 822. 815. 842. 847 Della Valle Enrico 531, 532 Egues J. C. 842 Deluca Marco 135 Ekahana Sandy Adhitia 503 Demler Eugene 416 Elender M. 148 168 Demsar Jure Elnaggar Hebatalla 138 Dena Yunpei 168 Emaury Florian 850 Denner M. Michael 152, 505 Embacher Franz 23 Derdzinski Andrea 482 Ermakov Sergey 733 Derlet Peter 619, 631, 636, 640, Ernstorfer Ralph 514 641 Ernzer Maryse 402 **Descotes Dominique** 1 901 **Dessalles** Claire F Di Cataldo Simone 132 Di Luca Mario 108 Faleo Tommaso 413 di Silvestro Alfredo 408 Faltinath Jonas 412 **Dick Kimberly** 825 Fankhauser Peter 54 **Diebold Ulrike** 202, 204, 208, 209, 161, 217, 218 Fasel Roman 224, 225 Fattori Marco 62 509, 512 Dil Hugo Faulhaber Enrico 731 Dimitrievska Mirjana 161 Faugué Benoît 152 **Dippel Ann-Christin** 152 Fauvet Bruno 917 406 Dirin Dmitry Favre Virgile 138 **Dittel Christoph** 413 Fedrizzi Alessandro 413 Diurba Richard 351 Feial Simon 241 Divall Edwin J. 168 Feld Artur 163 Dieahdi K. 16 Felici Federico 956.957 **Doblhammer Andreas** 714.732 Feliciano Faria Maria Carolina Dobrovolskiy Oleksandr V. 126, 142, 612, 614, 307 615 Fena Xinliana 218 168 Dössegger Janine Fennell Tom 705 Doinaki Anastasia 313 Fenoglio Carlo Alberto 337 Doll Andrin 848 Fernandes R. M. 148 Domaine Gabriele 138 Ferraioli Luigi 485 Domke Jari 223 Ferrillo Martina 346 Donnelly Claire 618.619 Ferstl Richard **436**, 408 Doorenbos Cornelis Bernardus Finizio Simone 619, 637 323 Fischer Mark 150. 152. 185 dos Santos Carlos 822 Fjellvag Oystein 703 Dos Santos Rufino Afonso 137, 187 Flurv Simon 702.707 Dotter Aaron 494 Förster Johannes 611 Douma Friso 907 Fogh Ellen 701, 156 **Dubs** Carsten 609, 612, 613, 614, Folk Reinhard 41 615, 632, 642 Fontcuberta i Morral Anna 123 Duda Michal 383, 384

Forker Roman

Forrer Nicolas

Forró László

223

107, 115

849, 813, 826, 843

Dufour Gabriel

Dutsov Chavdar

Durrer Ruth

413

317

Forslund Ola Kenji	169 , 505
Fountas Panagiotis	432
Fouquet Peter	207
Fragos Tassos	494
Franchini Cesare	208, 209
Frank Antonia	956
Freund Hans-Joachim	206
Frey Matthias	973
Frison Ruggero	152
Fritsch Veronika	703
Fritz Torsten	223
Fromholz Pierre	144
Froufe Luis	914
Fuhrer Andreas	51 , 815, 822, 844
Furno Ivo	959

G

Gadea Diez Gerard Gaina Capu Roxana Galloway Michelle Galperti Cristian	813, 826, 849 181, 216 355 956
Gambardella Pietro	616, 634
Gamsakhurdashvili Ts	148
Gao Zirui	618
Garamus Vasil	718
Garcia Cristobal	385 309
Garcia Martin Luis Miguel Garcia Rodrigues Henrique	
Garcia-Fernandez Mirian	384 , 383 152, 170
Garg Mudit	482
Gargiulo Simone	22
Gatti Gianmarco	502
Gauthé Olivier	189
Gawryluk Dariusz Jakub	136, 146, 503
Gayatri Rahulkumar	973
Geerts Yves	212
Gencturk Elif	916
Gerber Simon	848
Geyer Simon	822, 847
Giardini Domenico	485
Giavazzi Davide	166
Gibbs Joe	812
Gilch Ines	735
Girard Frédéric	355 706
Glavic Artur Gregor Gligorova Angela	328 , 363
Gligorovski Vojislav	908
Gloor Jamie	81
Go Dongwook	605
Gönczy Pierre	907
Gold Herbert	62
Goldobin Edward	71
Goloubinoff Pierre	917
Gong C.	148
Goschin Florian	438
Gotsmann Bernd	31 , 228

Graetzel Michael	109
Gramse Georg	222
Grasser Tibor	202
Grimes Michael	619
Grimm Manuel	848
Groot Frank	138
Gross Alisa	912, 926
Gross Boris	645
Gross Leo	221
Grosse Mirco	717 , 715
Grossi Michele	845
Gu Genda	113
Guguchia Zurab	148 , 146, 505
Guizar-Sicairos Manuel	618
Gupta Akash	638 , 841
Gupta Ritu	148
Gurung Sabina	168
Gutiérrez-Lezama Ignacio	504
Gysin Urs	638, 841

Н

Haas Dominik Haefeli Guido Hameed Fareeha Hamilton Eleanor Hamm Daniele Hanski Otto Happacher Jodok Harra Louise Hartl Anna Harvey-Collard Patrick Hasan M. Z. He Qi Hechenberger Florian Heim Pascal Heinrich Martin Heiß Cosmas Heiz Ueli Held Karsten Heller Matthieu Hemmatzade Amirreza Hendrickx Nico Henry Louis Herszterg Sophie Herviou Loic Hetényi Bence Heyderman Laura Hickl Vincent Hildebrandt Malte Hillebrands Burkard Hingerl Kurt Hinlopen Roemer	435 333 162 492 953 327 403 15 532 815 148 154 308 166 205 957 204 112, 132 339 705 815 331 903 143, 186 808 619, 631, 633, 634, 636, 640, 641 906 389 613 226 684 305
Hinlopen Roemer	684

38	
Ηċ	öfer Ulrich
Ηċ	ofinger Andreas

Jouini Zakaria

Hoter Ulrich	514	Jouini Zakaria	186
Höfinger Andreas	639		
Hofhuis Kevin	633	К	
Hofmann Andrea	814		
Hofmann Oliver T.	223	Kageyama Hiroshi	156
Holler Mirko	618	Kaiser Katharina	201
Holmes Zoë	86, 806 , 804, 812,	Kakurai Kazuhisa	156
	845	Kanazawa Naoya	637
Hong Xunyang	170	•	
Horio Masafumi	169	Kang Min-Gu	605
Hornberger Klaus	408	Kanjampurath Sivan Aswathi	
Hossain Md. S.	148	Karg Thomas	402
Hourigan Noah J.	219 , 207	Karl Richard	431, 433
Ū		Karnatak Paritosh	107
Hrabec Ales	634	Karner-Petritz Esther	62
Hsu Yu-Te	684	Karrer Max	71
Huang Hsin-Yuan	812	Kasahara Shigeru	684
Huang Wenhao	103, 228	Katircioglu Isinsu	912
Huber Martin C. E.	44	Katsaros Georgios	821
Huber Rupert	514	Kauniskangas Anni	345
Huett Emanuel	954	Kaur Yashpreet	123 , 183
Hug Hans Josef	601 , 242, 602	Keil Robert	413
Hume Timothy	316	Kelly Eoin G.	815, 822
Hussey Nigel	684	Kentsch Ulrich	211
Hutchinson Joel	104 , 147	Kenzelmann Michel	607
Huth Michael	126	Keppert Sandra	71
Hwang Jeong Ha	217	Kern Christian S.	506 , 515
		Khalsa Guru	531
1		Khasanov Rustem	146, 148
		Kicsiny Peter	386
Iacobucci Giuseppe	337, 340	Kierspel Thomas	435
ladarola Giovanni	386, 387	Killian Carina	327
Ihli Johannes	618	Kilminster Ben	32
Issing Julia	504	Kim Timur	505
Ito Suguru	514	Kinikar Amogh	217
Ivashko Oleh	152	Kirch Klaus	389, 733
Ivsic Trpimir	115	Kisiel Marcin	841 , 638
Iwai Ryoto	389	Kiss Oriel Orphee Moira	845
		Kitaori Aki	637
J		Klebel-Knobloch Benjamin	117 , 115
0		Kleibert Armin	641
looot Doniamin	COF	Kleiner Reinhold	71
Jacot Benjamin J.	605	Kletzl Victoria	321
Jakub Zdenek	209	Klingner Nico	211
Jamilpanah Loghman	602	Klinovaja Jelena	104, 144, 147, 604
Janoschek Marc	707 , 153, 184, 702,	Knauer Sebastian	612 , 609, 614, 615,
lan authola Duainini Danaina Ma	708		632, 639
Janovitch Broinizi Pereira Ma		Knecht Andreas	389
	415	Knobel Jonas	216
Jeindl Maximilian	166	Koch Dominik	228
Jena Debdeep	531	Koch Markus	166
Jerbi Sofiene	812	Koelle Dieter	71
Jernej Irmgard	439	Könemann Fabian	59
Jesacher Alexander	923	Kononov Artem	
Ji Si-Cong	416	Koraltan Sabri	825, 846
Jiang Jin	102 , 106		614, 615, 639
Johannesson Sofia Carolina		Koratzinos M.	384
Johansson Philip	151	Korey Michael	3
Johnson Steven	168	Korner Philipp A.	71

Kornher Thomas	53	Lemke Henrik T.	168
Kosse Jaap	383, 384	Lempesis Nikolaos	109
Kothari Mukund Krishna	909	Lenz Kilian	611
Kotitsa Rafaella Eleni	337	Leoni Thomas	203
Kovalenko Maksym	406	Lerch Sacha	845
Kovarik S.	616	Leutgeb Josef	72 , 308
Kovlakas Konstantinos	494	Lev Leonid L.	513
Kramer Kevin	169	Levchenko Khrystyna	613
Kratzer Markus	135		705
	363	Lhotel Elsa	
Kraxberger Viktoria		Li Ang	847
Kremer Geoffroy	512	Li Hang	215 , 105, 508
Krempasky Juraj	205, 512	Li Lin	109
Krieger Jonas A.	507	Li Manbing	362
Krien Friedrich	112	Li Yifan	414
Kruckow Matthias	483	Liang Shiling	905
Kruse Karsten	904	Licciardello Salvatore	684
Kubec Adam	60	Lichtensteiger Celine	243
Küspert Julia	105, 152, 505	Lieske Leonard-Alexander	221
Kugathasan Thanushan	337, 340	Ligotino Michael	973
Kuhlmann Andreas	815, 822, 847	Limberg Wolfgang	718
Kukuljan Ivan	416	Lin Chun	505
Kumar C. M. N.	117	Lin Rui	141
Kumar Richi	718	Lindner Jürgen	611
Kummer Kurt	181	Lindner Morris	612, 614, 632
Kundermann Stefan	850	Lisovskyi Vitalii	306
Kuprava A.	126	Liu H.	148
Kurosawa Tohru	152	Liu Huanlong	105, 146
	102	Liu Xiaoxiong	169
		Liu Zhentao	634
L		Loncaric Ivor	115
Laan Daphne	902	Lopez Posadas Claudia	203
Labagnara Marco	910	Lopez-Suarez Miquel	123
Labordet Alvarez Angel	161	Lospalluto Giuseppe	389
Ladak Sam	635	Loss Daniel	104, 144, 147, 604,
Laddha Sunny	439		842
Lamb-Camarena Sebastian	126 , 142	Louat Alex	505
Lammegger Roland	439	Louro Alves Diogo Miguel	388
Lamprecht Bernhard	62	Lovera Andrea	55
Lancierini Davide	303	Lüscher Bernhard	185
Landi Gabriel	151	Lüthi Dominik	218
Lang Wolfgang	71, 142	Luetkens Hubertus	146, 148
Langmeier André	957	Luo Yongkang	707
Lannoy Christophe	388	Luo Zhaochu	634
Lanyon Ben	824	Lyu Jike	146
Larsen Camilla Buhl	736		
Lasocha Kacper	388	М	
Lass Jakob	702, 712		
Latychevskaia Tatiana	157, 188	Ma Ji	218
Le Mardelé Florian			641 , 631, 636, 640,
	154	Macauley Gavin	, , , ,
Leandersson Mats	505	Maakawiak Adèla	706
Lechner Rainer T.	163	Mackowiak Adèle	924
Lecomte Steve	850	Maggio-Aprile Ivan	113
Lee Patrick A.	150	Magliocca Chiara	337
Lee Soogil	605	Magnes Werner	439
Lee Wai Tung	716	Mahrt Rainer	404, 406
Lehmann Sebastian	825	Maier Christian	135
Lei Hechang	148, 505	Maier Philipp	207 , 219

Maisi Ville F.	825	Mondal Amrit Kumar	635
Maji Rituparna	357	Mongillo Martina	343 , 342
Makarov Denys	126	Monney Claude	181, 512
Maletinsky Patrick	403, 637, 645	Morata Alex	183
Mancini Lucia	162	Morawietz Alexander	152
Mandru Andrada-Oana	242, 602	Moretti Théo	337, 340
Mangeng Christian	431	Morgenstern Karina	24
Mangham-Neupert Titus		Moriani Andrea	162
•	149 , 152, 169, 505		
Mankowsky Roman	168	Morpurgo Alberto	504
Manley Suliana	911	Mounet Nicolas	388
Mansoulié Bruno	13	Müllegger Stefan	241 , 222
Maradia Vivek	921	Müller Markus	848
Maraffio Andrej	364	Mueller Arnd	61
Marchevski Radoslav	309	Münzer Philipp	135
Marin Luca	356	Mullan Patrick	389, 733
Marsik Premysl	154	Munakata Koji	156
Martinelli Leonardo	152	Muñoz-Bolaños Juan D.	923
Martinetz Lukas	408	Muntwiler Matthias	205
Martino Eduardo	115	Muralikrishnan Sriramkrishn	an
Martins Araujo Douglas	382 , 383		973
Marzari Nicola	101	Murtagh Daniel James	417
Massey Jamie Robert	619 , 636, 637	Musso Maurizio	124
Matas Marek	356	Mustafi Sara	188 , 157
Matkovic Aleksandar	202, 211	Muster Augustin	914
Matmon Guy	848	Mykytchuk Dmytry	955
-			900
Matsuda Yuji	684		
Mattmüller Martin	44	Ν	
May Andrew	635		
Mayani Mayani Sonali	973	Nag Abhishek	168
		rug / whiteh	100
Mayer Felix	12	Nagel Peter	216
Mayer Felix Mayer Lucio	482	0	
Mayer Felix Mayer Lucio Mayor Marcel	482 408	Nagel Peter	216
Mayer Felix Mayer Lucio	482	Nagel Peter Nakamura H.	216 146
Mayer Felix Mayer Lucio Mayor Marcel	482 408	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu	216 146 146 218
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina	482 408 611	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard	216 146 146 218 611
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina	482 408 611 712 , 702, 703, 708,	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat	216 146 146 218 611 152
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel	482 408 611 712 , 702, 703, 708, 734	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh	216 146 146 218 611 152 156 , 701
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E.	482 408 611 712 , 702, 703, 708, 734 14	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich	216 146 218 611 152 156 , 701 241
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa	482 408 611 712 , 702, 703, 708, 734 14 146 154	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery	216 146 218 611 152 156 , 701 241 327
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias	216 146 218 611 152 156 , 701 241 327 735
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas	216 146 218 611 152 156 , 701 241 327 735 611
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Merle Antoine	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois	216 146 218 611 152 156 , 701 241 327 735 611 327
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son	216 146 218 611 152 156 , 701 241 327 735 611 327 531
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst Michlmayr Thomas	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Merge Antoine Meyer Ernst Michlmayr Thomas Mielke III Charles	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst Michlmayr Thomas Mielke III Charles Mikhailov Mikhail	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Merge Antoine Meyer Ernst Michlmayr Thomas Mielke III Charles	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186,	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333 813 , 826, 849
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst Michlmayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333 813 , 826, 849 156
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst Michlmayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Notting Frithjof	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst Michlmayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333 813 , 826, 849 156
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Notting Frithjof	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce	216 146 218 611 152 156 , 701 241 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Merigenthaler Matthias Merigenthaler Matthias Merie Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina Miserev Dmitry	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107 104	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce Northup Tracy	216 146 218 611 152 156 , 701 241 327 735 611 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701 88
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Merigenthaler Matthias Merigenthaler Matthias Merigenthaler Matthias Merie Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina Miserev Dmitry Misra Devina	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107 104 494	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce Northup Tracy Nuber Jonas	216 146 218 611 152 156 , 701 241 327 735 611 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701 88 389
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina Miserev Dmitry Misra Devina Mikvik Peter	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107 104 494 133	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwirth Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce Northup Tracy Nuber Jonas Nuster Robert	216 146 218 611 152 156 , 701 241 327 735 611 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701 88 389 952
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Merigenthaler Matthias Merigenthaler Matthias Merigenthaler Matthias Merie Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina Miserev Dmitry Misra Devina	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107 104 494 133 416	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwith Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce Northup Tracy Nuber Jonas Nuster Robert Nyckees Samuel	216 146 146 218 611 152 156 , 701 241 327 735 611 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701 88 389 952 187 , 137
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina Miserev Dmitry Misra Devina Mikvik Peter	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107 104 494 133	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwith Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce Northup Tracy Nuber Jonas Nuster Robert Nyckees Samuel	216 146 146 218 611 152 156 , 701 241 327 735 611 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701 88 389 952 187 , 137
Mayer Felix Mayer Lucio Mayor Marcel Mayr Sina Mazzone Daniel Mears Laura L. E. Medarde Marisa Meenakshi Sharma Meier Matthias Mergenthaler Matthias Mergenthaler Matthias Mergenthaler Matthias Merle Antoine Meyer Ernst MichImayr Thomas Mielke III Charles Mikhailov Mikhail Mila Frédéric Milanese Attilio Milanesio Matteo Minár Ján Mingazheva Zarina Miserev Dmitry Misra Devina Mikvik Peter Møller Frederik	482 408 611 712 , 702, 703, 708, 734 14 146 154 208, 209, 227 815, 844 957 44, 638, 841 382 146 , 148 142 137, 143, 156, 186, 187, 189, 636, 701 382, 383 340 512, 513, 532 107 104 494 133 416	Nagel Peter Nakamura H. Nakatsuji Satoru Narita Akimitsu Narkowicz Ryszard Natterer Fabian Donat Nayak Mithilesh Nejedly Jindrich Nesvizhevsky Valery Neuwith Tobias Ney Andreas Nez Francois Nguyen Thai-Son Nicolaï Lorent Niedermayer Christof Niel Elisabeth Maria Nigro Arianna Nojiri Hiroyuki Nolting Frithjof Normand Bruce Northup Tracy Nuber Jonas Nuster Robert Nyckees Samuel	216 146 146 218 611 152 156 , 701 241 327 735 611 327 735 611 327 531 513 702 333 813 , 826, 849 156 214, 243 156, 701 88 389 952 187 , 137

0		Peszka Joanna Petersen Dirch Hjorth	389 508
Obozinski Guillaume	912	Petitjean Claude	389
Očenášek Jan	513	Petocchi Francesco	105, 125
Oda Migaku	152	Petritz Andreas	62
Oddi Virginia	406	Pettinari Claudio	154
Oertle Philipp	63	Petzoldt Philip	204
Oggenfuss Alexander R.	168	Philippe Jonas	708 , 184
Okamoto Satoshi	503	Picardi Antonio Pieloni Tatiana	340 386, 387, 388
Olgiati M.	14 638, 841	Pile Santa	611
Ollier Alexina Opačak Nikola	17	Pinto Nicola	154
Oppliger Jens	152	Pires David	56
Orekhov Alexei	815	Pirro Philipp	613, 615
Orlov Dmytro	716	Pivetta Marina	644
Orsi Francesca	412	Pizarro Medina Andrea	337
Ouahada Sana	335	Plähn Nils	924
Ovuka Vladimir	168	Plötz Maximilian	735
		Plokhikh Igor	705
Р		Plumb Nicholas Clark	105, 215
		Podlesnyak Andrey Poggio Martino	702 432, 645
Pac Aleksandra	636 , 641	Polatidis Efthymios	736
Pärr Nora	43	Poli Emanuele	956
Pal Banabir	604	Polley Craig	505
Paliwal Prerna	433, 434 825	Pollinger Andreas	439
Pally Alessia Panchal Gyanendra	⁶²⁵ 214, 243	Pomjakushina Ekaterina	156, 169, 701
Paolozzi Lorenzo	337, 340	Poncé Samuel	509
Papa Angela	389	Popcevic Petar	117
Parchenko Sergii	633	Popov Maksym	613
Paredes Stephan	815, 844	Popov Mikhail	434
Paris Eugenio	138	Porrati Fabrizio Potts Heidi	126 85
Parisotto Alessandro	16	Potts Patrick	151, 402, 407, 415
Park Byong-Guk	605	Prabhakaran Dharmalingam	
Parkin Stuart	604	Pradler Irina	714 , 732
Parkinson Gareth	204, 208, 209, 224, 227	Prech Kacper	151
Paschke Fabian	221 221	Presel Francesco	206
Pashkevych Yuriy	181	Prokhnenko Oleksandr	156, 701
Pásztor Árpád	155	Pryds Nini	215, 508
Patlatiuk Taras	842 , 843, 846, 847	Pudelko Wojciech Radoslaw	
Patthey François	644	Pulkkinen Aki	512
Paul Tathagata	103 , 228	Puntscher Lena	208, 209
Pavelec Jiri	224 , 204, 208, 209,	Puphal Pascal Puschnig Peter	169 19 , 166, 506, 515
	225	Pushkarna Ishita	155
Pecchio Davide	633	Pyon S.	170
Pedarnig Johannes P.	71		
Pedrini Marta Peng Ding	955 157 , 188	Q	
Perali Andrea	154	_	
Perek Artur	954	Quigley Patrick	959
Peremadathil Pradeep Resh			
	242		
Peres Ricardo	355		
Perrin Mickael Lucien	103, 217		
Perry Robin	533		

R

Raabe Jörg	619			
Radovic Milan	215,	508		
Rafsanjani-Abbasi Ali	227			
Rahi Sahand	912,	908		
Rainò Gabriele	406	000		
Rajado Silva Mariana	354 ,	355		
Rajaeipour Pouva	923	000		
Ramezani Mehdi	638,	0/1		
Ramires Neves de Oliveira A		041		
namiles neves de Oliveira A	141			
Domíroz Coroío Diogo				
Ramírez García Diego	355	المطم	_	
Ramirez-San-Juan Guillermir		cnelle	Э	
Dentil Orech	902			
Ranftl Sascha	974			
Rary-Zinque Alexis	644			
Rath David	224			
Rauer Bernhard	416			
Rauls Eva	241			
Raventos Marc	736			
Ray Sujay	131			
Raymond Stephane	702			
Rebhan Anton	308			
Reddy Priyanka	115			
Reich Matthias	956			
Reichmann Klaus	135			
Reimann Timmy	612,	614,	632	
Reimerdes Holger	954,	955		
Renner Christoph	113,	155		
Resel Roland	212,	223		
Reuteler Joakim	619			
Richter Jessica	844			
Rickhaus Peter	645			
Ridderbos Joost	825,	846		
Riddiford Lauren	606			
Riegger Franziska	493			
Ries Dieter Achim	325			
Ritsch Helmut	411			
Ritsch-Marte Monika	923			
Ritter Max	163			
Robertsson Johan	493			
Robinson Joshua	219			
Robredo Iñigo	507			
Rocha Kyle	494			
Roduit Loïc	136,	503		
Roessger Conrado	715	000		
Roethlisberger Ursula	109			
Rogalev Andrei	216			
Roguski Mikolaj	433			
Romero Abujetas Diego	914			
Ronchetti Federico	333			
Ronetti Flavio	144			
Rønnow Henrik		132	156,	70
	713	150,	150,	10
Rosa Priscilla	702			
Rosendal Victor				
HUSEHUAI VICIUI	508			

Rosillo Luis	226
Roux Aurélien	901
Ruckert D.	616
Rudolph Manuel	812 , 845
Ruffieux Pascal	218
Ruhman Jonathan	150
Ruhwedel Moritz	613, 615
Ruiz-Caridad Alicia	164, 813, 826, 849
Rurali Riccardo	123, 164
Rusponi Stefano	644
Ryan Paul	227 , 225

S

	Saad Shaikh	486 , 305
	Saavedra García Alberto Jos	
		732 , 714
	Sabater Iglesias Jorge Andre	
		337
	Sabino João	416
	Sacchi Marco	207
	Saccomano Giulia	124
	Sachslehner Franz	42
	Sahin Yesim	406
	Sahoo Sourav	635 , 633
	Sakurai Mikio	389
	Salbreux Guillaume	903, 909
	Samal Michal	241
	Samothrakitis Stavros	736
	Samuelsson Peter	151
	Sander Mathias	168
	Sanfilippo Stephane	383
	Sangiovanni Giorgio	505
	Sant Roberto	181
	Sarkar Subhrangsu	181 , 216
	Sassa Yasmine	169, 170
	Sassi Alberto	917
	Sauerwein Nick Jacob	412
	Sauter Olivier	956, 957
	Savoini Matteo	168
	Sazgari Vahid	146
	Scagnoli Valerio	618, 619, 633, 637,
		640, 641
	Scarlino Pasquale	825
	Schäfer Frank	134
	Schaer Mattia	381
	Schauerte Benedikt	735
	Scheder Maxime	915
	Schefer Meinrad Moritz	332
	Scherf Ullrich	404
	Schiek Manuela	166
	Schilling Andreas	105
	Schlitz R.	616
6, 701,	Schmeling Sascha	25
	Schmelzbach Cedric	485
	Schmid Christoph	71
	Schmid Gian-Luca	402

Schmid Michael	202, 204, 208, 209,	Simeth Wolfgang	702, 707
	224, 225	Simon Charles	681
Schmidt Matthieu Pierre Dar		Simoncelli Michele	101
	927	Simonov Arkadiy	705
Schmidt Soeren	736	Simonov Kyrylo	803
Schmidt-Wellenburg Philipp	313, 316	Simonović Ksenija	408 , 436
Schmiedmayer Jörg	416	Simutis Gediminas	111 , 184, 708
Schmitt Thorsten	136, 138, 513	Singar Tejas Parasram	113
Schmoll David Schnabel Thomas	609 , 612, 614, 639 124	Sinhal Mudit Siri Olivier	433
	366	Sofer Zdenek	203 202
Schneider Nikolaus Schönenberger Christian	107, 638, 825, 841,	Soh Jian-Rui	156
Schonenberger Onnstan	846	Soh Yona	136, 503
Schreiner Katharina	327	Sohmen Maximilian	923
Schröter Niels B. M.	527 507, 514	Sojo Gordillo Jose Manuel	183
Schüler Michael	514 , 507	Sokolovic Igor	73, 202 , 509
Schüttelkopf Philipp	416	Soldini Martina	149
Schulthess Ivo	711	Sombut Panukorn	209 , 208, 227
Schulthess Thomas	4	Sommariva Cristian	957
Schulz Michael	735	Sonderegger Samuel	58
Schupp Felix	815, 844	Soranzio Davide	168
Schuppler Stefan	216	Sorba Lucia	164
Schwanda Christoph	366	Sótér Anna	26
Schwarzl Robert	166	Sotiriadis Spyros	416
Schweigler Thomas	416	Sotnikov Dmitry	382, 383
Scutteri Lorenzo	913	Soulier Mathias	216
Sebold Simon	716, 735	Souto Gonçalves de Abreu E	
Seidel Mike	26 , 387		168
Sekitani Tsuyoshi	62	Spaldin Nicola	133, 356, 608, 617
Sels Dries	416	Spano Frank C.	166
Semeniuk Konstantin	115	Spring Jonathan	146
Sentef Michael	514	Springholz Gunther	511 , 205, 512
Sepperer Thomas	124	Srivastava Philipp	494
Sepulchre Cyrille	959	Stadlober Barbara	62
Serdechnova Maria	718	Stähler Simon	485
Serha Rostyslav	614 , 609, 612	Stary Ivo	241
Setvín Martin	509	Staub Urs	168
Sfyrla Anna	11	Steinbrück Martin	715, 717
Shakirova Diana	405	Steiner Ulrich	16
Shayeghi Armin	408, 436	Stepanow S.	616
Shen Tianyang	848	Steppke Alexander	683
Shi Ming	215	Sterrer Martin	206
Shi Youguo	148, 505	Stetsovych Vitalii	241
Shibauchi Takasada	684	Stewart Rhea	641
Shin Soohyeon	146	Stickler Benjamin	408
Shiroka Toni	146	Stiefel Michael	844
Shliakhtun Oksana	184	Stock Taylor J. Z.	513
Shlykov Aleksandr	433	Stockert Oliver	703
Shorubalko Ivan	634	Stöferle Thilo	51 , 404, 406
Shpilinska Stanislava	142	Stoyanov Miroslav	973
Shumyia N.	148	Stramaglia Federico	214, 243
Si Liang	132	Strassmann Peter	925
Si Mayan	608	Straub Michael	502
Sibille Romain Franck	182, 703	Strobl Markus	716, 736
Silva Bruno	906	Strokov Vladimir N.	513 , 136, 138, 531,
Simbrunner Josef	223	Ohmula Ohafara	532
Simeoni Matthieu	953	Strub Stefan	485

Stuckert Juri Suess Dieter Sun Haomin Sun Meng Sunko Denis Supanut Thanasilp Surzhenko Oleksii Suter Tim Suzuki Yuri	717 614, 615, 639 958, 971 494 118 , 115 804, 845 613 168 606	Trtik Pavel Trüssel Dominique Tschepp Andreas Tschurl Martin Tseng Yi Tu Z. Turrini Alexandra Angeline	718 847 62 204 138 148 156
Svab Simon Svami Rahul	806 847, 842, 843 228	U	
Swinkels Milo Yaro Syböck Alexander	123 225	Uemura Takafumi Ukleev Victor	62 637
	LLJ	Ulreich Manuel Ungerer Jann Hinnerk	208 825 , 846
т		Urbánek Michal	126, 142, 612, 614, 615, 632, 642
Tabis Wojciech	117	Urbonas Darius	404
Tachikawa Saeko Tajik Mohammadamin	123, 183 416	Urdshals Einar Usanov Dmitry	356 532
Takagi H.	170	Osariov Difficity	552
Takayama T.	170	v	
Tamai Anna	502, 503, 504, 533	v	
Tamoko Muranaka	26	Vaccari Lisa	124
Tamtögl Anton	207, 219	Vaccar Lisa Vagne Quentin	909
Tan Tzer Han	901	Vagne Quentin Vahramian Pietro	435
Taniguchi Takashi	102, 106, 107, 108	Vallecorsa Sofia	845
Taqqu David	389	Vallis Nicolas	381
Tartarotti Maimone Damaris	607	Valtiner Markus	14
Tassan Pietro	404	van den Berg Arjen	635
Tatlisu Halit	162	van Riesen-Haupt Leon	386
Teichert Christian	211 , 135	van Swygenhoven Helena	2
Testa Luc	138	van Waas Tom	509
Theiler Christian	953, 954	Vandersypen Lieven	811
Thelander Claes	825	Vasiliev Sergey	327
Thiagarajan Balasubramania		Vaz Carlos A. F.	214, 243
Thisland on Friedrich K	505	Venkateswaran Aravindhan	307
Thielemann Friedrich-K.	44	Verba Roman	609, 612, 614
Thingstad Even	147 , 144	Verbeek Xanthe	608
Thomas Antony Thomas Keith	203 61	Verdozzi Claudio	151
Thomas Sean	702	Vergniory Maia G.	507
Thompson Ryan	643	Villa Ilaria	182
Thomson Thomas	619	Vincent Jean-Paul Vincent Simon	903 959
Tiwari Satyam	917	Vinciguerra Alessandro	973
Tiwari Shubhanshu	481 482, 484	Vishwakarma Aishwarya	616
Tokura Yoshinori	637	Vitali Bastiano	389
Tolj Davor	115	Vockenhuber Christof	634
Toschi Alessandro	112	Vogiatzi Stergiani Marina	314
Tosic Tara	617	von Arx Karin	105, 170
Tosti Silvano	162	von Planta Claudio	435
Tovaglieri Ludovica	243	von Rohr Fabian	502, 504
Tovar Michael	736	von Salis Gian	603, 815, 822
Traut Silke	57	von Schoeler Katharina	312
Trautvetter Johannes	164, 826	von Zimmermann Martin	152
Treutlein Philipp Treves Samuel	26, 33 , 402, 414 637 , 619	Voneshen David	702
Trimarelli Caterina	358	Voronov Andrey	642, 609, 612, 614,
			632, 639

Vranik Radovan	241	x	
W		Xavier Jr. Neubi F. Xing Zepei	207 494
Wagner Glenn	149	Xu Bing	154
Wahlbrink Thorsten	404	Xu Yumeng	484
Wang Chunlei	208 , 209, 227	Xue Fen	606
Wang Qi	126, 612, 613, 614,		
Mong Oisi	615, 632, 642	Y	
Wang Qisi Wang Samson	152, 169, 170, 505 804	Mahara Davialla	700
Wang Shan X.	606	Yahne Danielle	702
Wang Tianyue	631 , 640, 641	Yan Jiawei Yan Taylor	139 389
Wang Yifeng	336	Yang Lin	218
Warburton Richard	822	Yang Qun	507
Watanabe Kenji	102, 106, 107, 108	Yang Shih-Chi	121
Watson Matthew	505	Yao MengYu	507
Webb Jonathan W.	413	Yen Yun	507 , 514
Weegen Moritz	432	Yin JX.	148
Wei Mingyang	109	Yin Q.	148
Wei Yuan Weick Sarah	138 , 136 715 , 717	Yin Yanning	431, 435
Weigand Markus	611	Yu Tianlun Yun Shinhee	136 215
Weihs Gregor	413	Yzombard Pauline	327
Weimer Agnes	163		021
Weiser Alina	365	Z	
Weiss Thomas	405	2	
Werner Philipp	105, 125, 131, 139	Zaft Alexander	731
Wetherington Maxwell	219	Zaletel Michael	145
White Jonathan	169	Zambito Stefano	337, 340
Widmann Eberhard Wildes Andrew	327 138	Zannier Valentina	164
Wilhelm Fabrice	216	Zapartas Emmanouil	494
Willitsch Stefan	431, 432, 433, 434,	Źaper Liza	645
	435	Zardo Ilaria	123, 164, 183, 228,
Willumeit-Römer Regine	718	Zavislyak Igor	813, 826, 843, 849 613
Wilson Neil	501	Zayed Mohamed E.	156
Wilts Bodo	16	Zeilinger Anton	21
Windischbacher Andreas	166, 506	Zenbaa Noura	615
Winkler Rafael Wintz Sebastian	168 611	Zennaro Riccardo	381
Wit Bareld	222 , 241	Zeppenfeld Peter	203
Witteveen Catherine	502	Zerdane Serhane	168
Wittweg Christian	353 , 355	Zhang Dongdong	435
Wojewoda Ondřej	632, 642	Zhang Wenliang Zhang Zexuan	136, 138 531
Wootton James	808	Zheng Han	805
Woracek Robin	736	Zheng Xin Yu	606
Worm Paul	112, 132	Zhou Kejin	152, 170
Wu Bing Wu Yantao	202	Zhou Zekang	106 , 102
Wüthrich Christian	145 20	Zhu Chenglian	406
Wurster Katja	71	Zibold Tilman	414
Wyss Marcus	645	Ziegler Dominik Ziehl Nathalie	52 324 733
		Zieni Nathalie Zirkl Martin	324 , 733 62
		Zivkovic Ivica	115
		Zolliker Markus	731
		Zou Ji	604

T45

Zubair Khan Muhammad Zumbühl Dominik	211 801 , 822, 842, 843,
	846, 847
Zurita Martim	955
Zwettler Timo	437

Notizen - Notes

Prof. Jürg Dual und Dr. Tobias Brack, ETH Zürich

Kleine Signale der Gravitationskonstante

Herzliche Gratulation an Prof. Jürg Dual, seine Forschungsgruppe an der ETH Zürich und allen Mitwirkenden zur erfolgreichen Messung von Newtons Gravitationskonstante mit einer neuen Methode basierend auf dynamischer Gravitation. Diese fantastische Leistung wurde mit heterodyner Laserinterferometrie und Lock-in Verstärkung in einer temperaturstabilen Umgebung in den Schweizer Alpen erzielt.

Wir sind begeistert, dass die anspruchsvolle Messung mithilfe von mehreren MFLI Lock-in Verstärkern und dem Multi-Device Synchronization (MDS) Protokoll realisiert werden konnte.

